语言
没有数据
通知
无通知
_{n=0}^{\infty }2^{n}f(2^{n})\end{array}}} 2番目の不等式を示すため、級数を2の冪乗個ずつの項に再度くくり直す。ただしこのとき以下のように1項ずつくくり方をずらすことで、 ∑ n = 0 ∞ 2 n f ( 2 n ) {\displaystyle \textstyle \sum
は根号 (radical sign, radix) と呼ばれる。また、根号の中に書かれた数 x は時に被開平数 (radicand) と呼ばれる。 根号を用いて冪根を表す場合、それは非負の値を持つ一価関数として扱われる。このような冪根を主要根 (principal root) と呼び、特に 2乗根の主要根を主平方根
にならず、n乗して初めて 1 になるものは原始的 (primitive) であるという。全ての自然数 n に対する 1 の原始n乗根を総称し、1 の原始冪根(いちのげんしべきこん)、または1 の原始累乗根(いちのげんしるいじょうこん)という。 複素数の範囲では、1 の原始n乗根は n ≥ 3 のとき2つ以上存在する。ド・モアブルの定理より、
数学において、ディリクレの判定法(ディリクレのはんていほう、英: Dirichlet's test)は、級数の収束判定法の一つである。名称はこれを記述したペーター・グスタフ・ディリクレにちなんでいるが、発表されたのは彼の死後、1862年の "Journal de Mathématiques Pures
コーシー–アダマールの定理(コーシー–アダマールのていり、英語: Cauchy–Hadamard theorem)とは、複素解析学の定理の1つであり、フランスの数学者オーギュスタン・ルイ・コーシーとジャック・アダマールにちなんで命名された。 一複素変数 z に関する、以下のような冪級数を考える。 f
コーシー=コワレフスカヤの定理(コーシー=コワレフスカヤのていり、英: Cauchy–Kovalevskaya theorem)とは偏微分方程式の解の存在と一意性についての基礎定理。解析性についての仮定の下、局所解の存在と一意性を保証する。常微分方程式の場合と準線形な偏微分方程式の特別な場合の結果
コーシー オーギュスタン=ルイ・コーシー - フランスの数学者。 コーシー (クレーター) まれにコーヒーをさすこともある。 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さ
数学におけるワイエルシュトラスのM判定法(わいえるしゅとらすのえむはんていほう、英: Weierstrass M-test)とは、無限級数に対する比較判定法に類似した判定法で、実数あるいは複素数に値をとる関数を項とする級数に適用する方法である。 {fn} を集合 A 上で定義された実数値ないし複素数値関数列とする。ある正数