语言
没有数据
通知
无通知
ウィキブックスにガロア理論関連の解説書・教科書があります。 ガロア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロア
数学において、微分ガロア理論(びぶんガロアりろん)とは、微分体の拡大を研究する分野である。 数学において、ある種の初等関数の不定積分は初等関数で表せない。 この様な関数としては、 e − x 2 {\displaystyle e^{-x^{2}}} が良く知られており、その不定積分は、統計学で馴染みの深い誤差関数
決定理論(けっていりろん、英: Decision theory)は、個別の意思決定について価値、不確かさといった事柄を数学的かつ統計的に確定し、それによって「最善の意思決定」を導き出す理論。意思決定理論とも。 決定理論の大部分は規範的である。すなわち、最良の意思決定
論理学において、言語 L {\displaystyle {\mathcal {L}}} の論理定項 (英: logical constant) は、 L {\displaystyle {\mathcal {L}}} の全ての解釈の下で同じ意味値を持つ記号である。 論理定項の二つの重要な型は、論理
事象と比較して簡潔であり、さらに既存の知識や常識とは反する自明ではない結論を導き出し、しかも原因としての独立変数と結果の従属変数を繋ぐ枠組みが明快でなければならない。最後に理論はその真偽を問うことが可能な性質、つまり反証可能性を保持しなければならない。以上の理論の対象となっている事象の重要性や実務的な実践性を加えることもできる。
theorem)は、「任意の正整数は、1 を除いて、一つまたはそれ以上の素数の積として(因子の順番の違いを除いて)ただ一通りに表すことができる」という初等整数論(算術)における定理である。 定理 ― 任意の正整数 n > 1 は一意的に素数の積に表される: n = p 1 n 1 p 2 n 2 ⋯ p k
公理に基づき, 論証によって証明された命題。 また特に, 重要なもののみを定理ということがある。
と表すことができて、左剰余類 aH は aH = {ah1, ah2, ah3, …, ahm} となる。 部分群 H から同値類 aH への写像 φa : H → aH を φa(h) = ah と定義するとき、φa(h1) = φa(h2) とすると、ah1 = ah2 となるから、左から a−1 を掛けて