语言
没有数据
通知
无通知
初等代数学における二項定理(にこうていり、英: binomial theorem)または二項展開 (binomial expansion) とは、二項式の冪を代数的に展開した式を表したものである。 定理の主張から、冪 (x + y)n を展開すると、n次の項 (n k) xn−k yk (0 ≤ k
(k_{m}-1)!}}} を通分すると左辺になることが示せる。 二項定理を既知とすると、項数 m について数学的帰納法により証明できる。 まず m = 1 のとき、k1 = n であり両辺は単項で x1n に等しい。 次に、m に対して多項定理が成り立つと仮定する。 ( x 1 + x 2 + ⋯
決定理論(けっていりろん、英: Decision theory)は、個別の意思決定について価値、不確かさといった事柄を数学的かつ統計的に確定し、それによって「最善の意思決定」を導き出す理論。意思決定理論とも。 決定理論の大部分は規範的である。すなわち、最良の意思決定
}} と従来のスコアとの(線形)相関関係は非常に高い(.95以上になることが多い)。したがって、従来のスコアに比べ、IRTのスコアのグラフは累積度数分布曲線の形に近くなる。 ここまでで示したモデルでは、1次元的な特性と、項目に対する正解・不正解のような2値のいずれかの応答を前提としていた。しかし、
数学の分野における安定性理論(あんていせいりろん、英: stability theory)とは、初期条件にわずかな摂動が与えられた際の微分方程式の解の安定性や力学系の軌道の安定性に関する理論である。例えば、熱方程式は、最大値原理によって、初期データのわずかな摂動によるのちの温度変化がわずかであるという意味で、安定な偏微分方程式(stable
否定論理積(ひていろんりせき)とは、与えられた複数の命題のうちに偽 (False)であるものが含まれることを示す論理演算である。NAND (Not AND; "ナンド"と読まれる)と表記される。別の表記法として、ヘンリー・シェファー(英語版)が1913年に導入したシェファーの棒記号(英: Sheffer
否定論理和(ひていろんりわ)とは、与えられた複数の命題の全てが偽であることを示す論理演算である。NORと表記される。矢印の「↓」を用いて"A ↓ B"とする表記方法もある。 否定論理和(NOR)は否定論理積(NAND)と同様に完全性(万能性とも)を持ち、NORのみで任意の論理関数を表現することが出
事象と比較して簡潔であり、さらに既存の知識や常識とは反する自明ではない結論を導き出し、しかも原因としての独立変数と結果の従属変数を繋ぐ枠組みが明快でなければならない。最後に理論はその真偽を問うことが可能な性質、つまり反証可能性を保持しなければならない。以上の理論の対象となっている事象の重要性や実務的な実践性を加えることもできる。