语言
没有数据
通知
无通知
現れる場合、第二種積分方程式と呼ばれる。 既知の関数 f (下記参照)が恒等的に 0 の場合、同次積分方程式と呼ばれ、f が 0 でない場合、非同次積分方程式と呼ばれる。 4種類の積分方程式(同次・非同次方程式をまとめた)の例として以下のように書ける。 ただし ϕ {\displaystyle \phi
流体の渦運動が柱管の形状である時、渦管と呼ばれる。特に渦管の半径が無限小と見なせる場合、渦糸と呼ばれる。1972年に日本の流体力学者橋本英典は、渦糸の運動において、局所誘導近似と呼ばれる近似の下、非線形シュレディンガー方程式が導かれることを示した。ある一本の曲線で表される渦糸の運動を考え、渦糸
フレドホルム方程式は(以下に定義する)核函数を含む積分方程式で積分の限界が定数であるようなものである。これは積分の限界が変数であるヴォルテラ積分方程式とは形の上で近い関係にある。 非等質 (inhomogeneous) な第一種フレドホルム積分方程式は g ( t ) = ∫ a
数学におけるヴォルテラ積分方程式(ヴォルテラせきぶんほうていしき、英: Volterra integral equation)とは、積分方程式の一つの特別な形である。その形状により第一種と第二種に分かれる。 線型の第一種ヴォルテラ積分方程式は f ( t ) = ∫ a t K ( t , s ) x
{\displaystyle k(x,y)} は点 y {\displaystyle y} から点 x {\displaystyle x} への移動確率で、しばしば分散核 (dispersal kernel) と呼ばれる。積分差分方程式は、多くの節足動物や一年生植物を含む単化性(英語版)個体群をモデル化する際に最も
数学において積分微分方程式(せきぶんびぶんほうていしき、英: integro-differential equation)とは、ある函数の積分と微分のいずれも含むような方程式のことを言う。 一般的な一階線型の積分微分方程式は、次のような形状を持つ。 d d x u ( x ) + ∫ x 0 x f
でない微分方程式は非線形微分方程式と呼ばれる。 例えば、g(x) を f(x) を含まない既知の関数とすれば、 ( d d x + α ) f ( x ) = g ( x ) {\displaystyle \left({\frac {\mathrm {d} }{\mathrm {d} x}}+\alpha
の場合の線型微分方程式は(もとの方程式に属する)斉次あるいは同次な (homogeneous)方程式と呼ばれる。s1 = d + s2 であることを考えれば線型微分方程式 Ly = b のすべての解は Ly = b の特殊解と、元の方程式に対応する斉次方程式 L y = 0 {\displaystyle Ly=0} の解