语言
没有数据
通知
无通知
流体の渦運動が柱管の形状である時、渦管と呼ばれる。特に渦管の半径が無限小と見なせる場合、渦糸と呼ばれる。1972年に日本の流体力学者橋本英典は、渦糸の運動において、局所誘導近似と呼ばれる近似の下、非線形シュレディンガー方程式が導かれることを示した。ある一本の曲線で表される渦糸の運動を考え、渦糸
のことと思って差し支えない。 一次方程式: 線型写像 a と定数 b が与えられているときの、未知数 x に関する方程式 a(x) = b 線型微分方程式: 線型写像 a と微分 ∂x := d/dx に対して微分作用素 a(∂x) を定義して、a(∂x)y = b を考える。 線型漸化式、線型力学系 斉次方程式の持つ線型性から、X
数学において線型方程式系(せんけいほうていしきけい)とは、同時に成立する複数の線型方程式(一次方程式)の組のことである。線形等の用字・表記の揺れについては線型性を参照。 複数の方程式の組み合わせを方程式系あるいは連立方程式と呼ぶことから、線型方程式系のことを一次方程式系、連立線型方程式、連立一次方程式などとも呼ぶこともある。
放物型偏微分方程式(ほうぶつがたへんびぶんほうていしき、英: parabolic partial differential equation)とは、二階の偏微分方程式(PDE)の一種で、熱拡散や海洋音波伝播(英語版)などを含む様々な科学の問題に現れるものである。 次の形式で記述される偏微分方程式 A
の場合の線型微分方程式は(もとの方程式に属する)斉次あるいは同次な (homogeneous)方程式と呼ばれる。s1 = d + s2 であることを考えれば線型微分方程式 Ly = b のすべての解は Ly = b の特殊解と、元の方程式に対応する斉次方程式 L y = 0 {\displaystyle Ly=0} の解
方程式を代数的に取り扱うという立場においては線型微分方程式は最も基本的な対象となる。 重要な数学的概念の導入・発展をもたらした関数方程式に、熱方程式や超幾何関数の微分方程式、可積分系に対するKdV方程式・KZ方程式が挙げられる。 微分方程式や差分方程式の解は、一般解と特異解とに分類されることがある。
c\|\mathbf {u} \|^{2}} となるような定数 c > 0 が存在する場合を言う。 双線型作用素 多重線型形式 二次形式 内積空間 正定値二次形式 半双線型形式 ^ Jacobson 2009 p.346 ^ Zhelobenko, Dmitriĭ Petrovich (2006)
幾何光学において、アイコナール方程式(アイコナールほうていしき)は光の伝播をあらわす基礎方程式である。 形式的には解析力学のハミルトン=ヤコビの方程式と同じ形である。 幾何光学の近似(波長が十分小さい)のもとで、マクスウェルの方程式から等位相面をあらわす量 L ( r ) {\displaystyle