语言
没有数据
通知
无通知
Fp)上の次数である。 体拡大 L/K は、K 上代数的に独立で、L = K(S) であるような、L のある部分集合 S が存在するときに、純超越的(purely transcendental)と言う。 拡大が代数的であることとその超越次数が 0 であることは同値である。このとき空集合が超越基底である。
超越関数(ちょうえつかんすう、英: transcendental function)とは、多項式方程式を満たさない解析関数であり、代数関数と対照的である。言い換えると、超越関数は加算、乗算そして冪根という代数的演算を有限回用いて表せないという意味で代数を「超越」したものである。
(1)普通の程度をこえ, すぐれていること。 とびぬけてすぐれていること。
「ちょうえつ(超越){(3)}」に同じ。
超越的(ちょうえつてき) 超越論哲学 超越拡大 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さい。このページへリンクしているページを見つけたら、リンクを適切な項目に張り替えて下さい。
超実数(ちょうじっすう、英: hyperreal number)または超準実数(ちょうじゅんじっすう、英: nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体であり、 1 + 1 + ⋯ + 1 {\displaystyle
超数学(ちょうすうがく)あるいはメタ数学(メタすうがく、英: metamathematics)とは、数学自体を研究対象とした数学のこと。超数学という語を初めて用いたのはヒルベルトであり、彼は数学の無矛盾性や完全性を問題とした。ゲーデルの完全性定理や不完全性定理はその例である。 [脚注の使い方] ^
超限数(ちょうげんすう、英: Transfinite number)とは数学において、すべての有限数よりも大きい数であり、"無限"ではあるが必ずしも"絶対無限"とは限らない。これらには、無限集合の濃度を表現するための超限基数(英: transfinite cardinals)と、無限集合の順序を表現するため使われる超限順序数(英: