语言
没有数据
通知
无通知
誤差分布(ごさぶんぷ)は、連続型の確率分布であり、指数べき分布、一般誤差分布とも呼ばれる。 独立変数が確率変数 x ( − ∞ < x < ∞ ) {\displaystyle x~(-\infty 誤差分布の確率密度関数は、3つのパラメータ μ ( − ∞ < μ
誤差関数(ごさかんすう、英: error function)は、数学におけるシグモイド形状の特殊関数(非初等関数)の一種で、確率論、統計学、物質科学、偏微分方程式などで使われる。ガウスの誤差関数とも。定義は以下の通り。 erf ( x ) = 2 π ∫ 0 x e − t 2 d t {\displaystyle
分布関数(ぶんぷかんすう、英: distribution function)とは、 確率論において、累積分布関数の事 物理学において、単一粒子位相空間での単位体積当たりの粒子数の関数の事 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用
ボース分布関数(ボースぶんぷかんすう、英: Bose distribution function)は、相互作用のないボース粒子の系において、一つのエネルギー準位に入る粒子の数(占有数)を与える理論式である。ボース–アインシュタイン分布関数 (Bose–Einstein distribution function)
フェルミ分布関数(フェルミぶんぷかんすう、英: Fermi distribution function)とは、相互作用のないフェルミ粒子の系において、一つのエネルギー準位にある粒子の数(占有数)の分布を与える理論式である。フェルミ・ディラック分布とも呼ばれる。
{\sqrt {1001}}-{\sqrt {999}}\simeq 31.638584-31.606961=0.031623} 有効数字が5桁になってしまう。 有効数字が8桁なので本来なら±0.00000005%程度の誤差であるはずが、±0.00005%程度、ざっと1,000倍の誤差を含むことになる。
の実現値が x 以下になる確率の関数のこと。連続型確率変数では、負の無限大から x まで確率密度関数を定積分したもの。 累積分布関数は同時確率分布でも条件付き確率分布でも定義される。 実数値確率変数 X の累積分布関数は以下で定義される。この確率は下側確率 (lower-tail probability)
確率分布関数(かくりつぶんぷかんすう、英: probability distribution function)とは、確率論において、意味が曖昧な言葉である。文脈によって、以下の3つのどれかを指す。 累積分布関数 確率質量関数 確率密度関数 累積分布関数を分布関数と省略することもあり、それに確率を