语言
没有数据
通知
无通知
複素係数の場合は、エルミート二次形式およびエルミート半双線型形式を考えれば、同様の結果を得る。 q = r = 0 のとき計量は正値あるいは正の定符号であるといい、p = r = 0 のとき負値あるいは負の定符号であるという。リーマン計量は定符号であるような計量テンソルである。ローレンツ計量は符号数 (p
を持つ(例えば、値、符号、大きさなど)。実数が正であるとは、その値(大きさではない)が零より大きいときに言い、負であるとは零より小さいときに言う。正または負の何れであるかという属性をその数の符号と呼ぶ。この場合、零それ自身は符号を持つとは考えられない。また、複素数に対してその符号
x=2\operatorname {\delta } (x)} 、ただし δ {\displaystyle \operatorname {\delta } } はディラックのデルタ関数 sgn x = d d x | x | ( x ≠ 0 ) {\displaystyle \operatorname {sgn} x={\frac
う体系を使うことで回避できる。2の補数では、負の数は(符号なしの感覚で言うと)1の補数より1だけ大きいビットパターンで表される。 例えば、8ビットの整数では値は右表のようになる。2の補数では、ゼロ(00000000)は一種類しかない。ある値の符号を反転した値を得るには、(元の数値が正か負かに関係なく)全ビットを反転させてから
自然数を, 引き算が自由にできるように拡張したもの。 自然数と 0 , および自然数にマイナスをつけた負数の全体。
数学における符号付測度(ふごうつきそくど、英: signed measure)とは、負の値を取ることも許されることで一般化された測度である。正負両方の値を取り得る有名な分布である電荷(electric charge)に由来して、チャージと呼ばれることもある。 符号付
(1)ある事を表すために, 一定の体系に基づいて作られたしるし。 コード。
付き添いの者たち。 供の者。