语言
没有数据
通知
无通知
(1)度数をはかること。
おしはかること。 推測。
(1)ある事を表すために, 一定の体系に基づいて作られたしるし。 コード。
ィルタモデルがある。すなわち残差系列を声帯励起信号として、予測係数をフォルマント特性をもつ声道として解釈するモデルである。 線形予測(信号推定分野で)は、遅くとも Norbert Wiener が雑音に埋もれた信号を検出する最適フィルタと予測の数学理論を打ち立てた1940年代にまで遡れる。Claude
解析学におけるハール測度(ハールそくど、英: Haar measure)は、局所コンパクト位相群上で定義される正則不変測度である。ハンガリーの数学者アルフレッド・ハールにその名を因む。 G を局所コンパクト群、B を G のコンパクト集合全体から生成される完全加法族とする。零でない非負値完全加法的集合関数
数学、とくに測度論における外測度(がいそくど, outer measure, exterior measure)は、与えられた集合の全ての部分集合に対して定義され、補完数直線に値をとる集合函数で、特定の技術的条件を満足するものを言う。この概念はコンスタンティン・カラテオドリによって加算加法的測度
ように2つのジョルダン可測集合の差もまたジョルダン可測となる。 ジョルダン内測度、ジョルダン外測度はユークリッド空間内の任意の集合に定義されるにも拘らず、ジョルダン内測度とジョルダン外測度が一致し(あるいは境界がジョルダン測度零で)なければならないという「可測条件」は、ジョルダン可測となる集合の種類を極めて制限することになる。
数学におけるルベーグ測度(ルベーグそくど、英: Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながら