语言
没有数据
通知
无通知
正規数が存在することが従うが、その例は1917年にシェルピンスキーによって初めて与えられた。 有理数はいかなる基数に関しても循環小数なので、定義より明らかに正規ではない。非正規数の集合はルベーグ零集合であるのである意味「小さい」が、非
テイラー級数は滑らかな関数の、冪級数としての表現を与えている。 フーリエ級数は各項を三角関数とする級数による関数の表示を与えている。 調和級数はよく知られた収束しない級数の例である。調和級数が発散する現象はオイラーによる素数の無限性の証明にも利用されている。 ディリクレ級数は調和級数型の級数
非正規化数(ひせいきかすう、Denormalized Number)または非正規数(ひせいきすう、Denormal Number)は、浮動小数点方式において「正規化」して表現できないような、0にごく近い、絶対値が極端に小さい数の表現法により表現された数である。英語では Subnormal Number
規則などではっきりきまっていること。 また, その規定。
規則に従って悪い点を正しく改めること。
発散する可能性を持つ級数 a1 + a2 + .... の和を定義するのに、ゼータ函数正規化と呼ばれる和を取る方法がいくつかある。 一つの方法として、(無限級数の)ゼータ正規化された和を、ζA(−1) が定義できるならばその値で定義する.ここで、ゼータ函数は、Re(s) が大きな数に対して次の和が収束するならばその
確率論および統計学において、対数正規分布(たいすうせいきぶんぷ、英: log-normal distribution)は、連続確率分布の一種である。この分布に従う確率変数の対数をとったとき、対応する分布が正規分布に従うものとして定義される。そのため中心極限定理の乗法的な類似が成り立ち、独立同分布に従
0 より大きい数。