语言
没有数据
通知
无通知
正規分布(せいきぶんぷ、英: normal distribution)またはガウス分布(英: Gaussian distribution)は、確率論や統計学で用いられる連続的な変数に関する確率分布の一つである。データが平均値の付近に集積するような分布を表す。主な特徴としては平均値と最頻値、中央値が
減衰しない)ためである。コーシー分布と同じく、対数コーシー分布では一切の(非自明)モーメントが無限大になる。平均はモーメントの一種なので対数コーシー分布は有限の平均、および標準偏差を持たない。 対数コーシー分布はいくつかのパラメータに関してのみ無限分解可能分布(英語版)となる。対数正規分布、対数
正規数が存在することが従うが、その例は1917年にシェルピンスキーによって初めて与えられた。 有理数はいかなる基数に関しても循環小数なので、定義より明らかに正規ではない。非正規数の集合はルベーグ零集合であるのである意味「小さい」が、非
切断正規分布 (せつだんせいきぶんぷ) は正規分布と似ているが、確率変数 x {\displaystyle x} の定義域が有限な確率分布である。上下とも有界 (A ≤ x ≤ B) なものを二重に切断された正規分布、どちらか一方だけのものを単一切断正規分布という。 切断正規分布の確率密度関数は以下で定義される。
指数分布(しすうぶんぷ、英: exponential distribution)とは、確率論および統計学における連続確率分布の一種である。これは例えばポアソン過程——事象が連続して独立に一定の発生率で起こる過程——に従う事象の時間間隔を記述する。 指数分布は台 (0, ∞) を持ち、母数 λ > 0
度数分布(どすうぶんぷ、英: Frequency Distribution)は、統計において標本として得たある変量の値のリストである。量の大小の順で並べ、各数値が現れた個数を表示する表(度数分布表)で示す。日本産業規格では、「特性値と、その度数または相対度数との関係を観測したもの」と定義している。
分布関数(ぶんぷかんすう、英: distribution function)とは、 確率論において、累積分布関数の事 物理学において、単一粒子位相空間での単位体積当たりの粒子数の関数の事 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用
と Y {\displaystyle Y} が正規分布に従い、独立であるならば、これらの結合分布は結合正規分布である。つまり、対 ( X , Y ) {\displaystyle (X,Y)} は2変量正規分布に従う。しかしながら、多変量正規分布に従う確率変数ベクトルの相異なる2成分は独立であると