语言
没有数据
通知
无通知
代数的整数論(だいすうてきせいすうろん、英: algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は
初等整数論(しょとうせいすうろん、英: Elementary number theory)とは、代数的な道具・手法(群、イデアルなど)や解析的な道具・手法(関数、極限など)を用いない初等的な整数論(数論)のことである。対象が、「整数」に限られることが多いためか、「初等数論」と呼ばれることは稀である。
自然数を, 引き算が自由にできるように拡張したもの。 自然数と 0 , および自然数にマイナスをつけた負数の全体。
mod n を n を法とする原始根(げんしこん、primitive root modulo n)と呼ぶ。すなわち n を法とする原始根とは、n を法とする既約剰余類全体が乗法に関して成す群 (Z / n Z)× が巡回群であるときの、その生成元のことである。 原始根が存在するのは n が 2, 4
ディオファントスはまた、線型な不定方程式の整数解を求める方法について考察した。線型不定方程式とは、解の単一の離散集合を得るには情報が不足している方程式を指す。例えば、 x + y = 5 {\displaystyle x+y=5} という方程式は、x と y が整数だとしても解
数学において、解析的整数論(かいせきてきせいすうろん、英: analytic number theory)あるいは解析的数論、解析数論とは、整数についての問題を解くために解析学の手法を用いる、数論の一分野である。解析数論の始まりはペーター・グスタフ・ディリクレがディリクレの算術級数定理の最初の証明を与えるためにディリクレの
BigNum あるいは整数であることを示す BigInt、日本語では多倍長などといった名前で呼ばれている。任意精度演算の記事も参照のこと。 正負両方の整数を表せる符号付き整数型と、非負(0または正)の整数だけを表せる符号無し整数型とがある。固定長では、符号付き整数型
は分岐する」という。 次に、3n + 2 の形の有理素数 p は Z[ω] でも素数であることが分かる。この状況を「p は惰性する」という。実際、p = 3n + 2 が2つの(単数でない)アイゼンシュタイン整数の積 αβ に等しいとすると、ノルムを取って N(α)N(β)