语言
没有数据
通知
无通知
初等整数論(しょとうせいすうろん、英: Elementary number theory)とは、代数的な道具・手法(群、イデアルなど)や解析的な道具・手法(関数、極限など)を用いない初等的な整数論(数論)のことである。対象が、「整数」に限られることが多いためか、「初等数論」と呼ばれることは稀である。
代数的整数論(だいすうてきせいすうろん、英: algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は
自然数を, 引き算が自由にできるように拡張したもの。 自然数と 0 , および自然数にマイナスをつけた負数の全体。
(1)数や文字の右肩に付記して, その累乗を示す数字や文字。 a² や an などの2 や n。
ディオファントスはまた、線型な不定方程式の整数解を求める方法について考察した。線型不定方程式とは、解の単一の離散集合を得るには情報が不足している方程式を指す。例えば、 x + y = 5 {\displaystyle x+y=5} という方程式は、x と y が整数だとしても解
初等関数(しょとうかんすう、英: Elementary function)とは、以下の一変数関数、及びこれらの関数を有限回合成して得られる合成関数の総称である。 代数関数 指数関数・対数関数 三角関数・逆三角関数 初等関数のうち、代数関数でないものを初等超越関数という。 指数関数
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
は有理整数環 Z の C における整閉包となっている。 代数体 K の整数環 OK は K ∩ A に等しく、また体 K の極大整環(英: maximal order)となっている。全ての代数的整数はそれぞれ何らかの代数体の整数環に属している。x が代数的整数であることは、環 Z[x] がアーベル群として有限生成(即ち有限生成