语言
没有数据
通知
无通知
線型代数学 > 行列値関数 > 行列指数関数 線型代数学における行列の指数関数(ぎょうれつのしすうかんすう、英語: matrix exponential; 行列乗)は、正方行列に対して定義される行列値関数で、通常の(実または複素変数の)指数関数に対応するものである。より抽象的には、行列リー群とその行列
pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=164443 . ^ Mohar, Bojan (2004), “Graph Laplacians”, in Beineke, Lowell W.; Wilson, Robin
数学の線型代数学の分野における係数行列(けいすうぎょうれつ、英: coefficient matrix)とは、線型方程式の集合における変数の係数からなる行列のことを言う。 一般的に m 個の線型方程式と n 個の未知変数を含む系は a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x
数や種類の多いこと。 また, たくさんの物。 副詞的にも用いる。
何度も何度も。 たびたび。 しょっちゅう。
と書けば、 rank ( A ) = rank ( A ¯ ) = rank ( A T ) = rank ( A ∗ ) = rank ( A ∗ A ) = rank ( A A ∗ ) {\displaystyle \operatorname {rank} (A)=\operatorname
Computational Science (pp. 111-120). Springer, Berlin, Heidelberg. ^ 行列の指数関数に基づく連立線形常微分方程式の大粒度並列解法とその評価 (日本応用数理学会論文誌 Vol.19, No.3, 2009, pp.293--312) 則竹渚宇, 今倉暁
行列 A = [ cos ( α ) − sin ( α ) sin ( α ) cos ( α ) ] {\displaystyle A={\begin{bmatrix}\cos(\alpha )&-\sin(\alpha )\\\sin(\alpha )&\cos(\alpha )\end{bmatrix}}}