语言
没有数据
通知
无通知
と書けば、 rank ( A ) = rank ( A ¯ ) = rank ( A T ) = rank ( A ∗ ) = rank ( A ∗ A ) = rank ( A A ∗ ) {\displaystyle \operatorname {rank} (A)=\operatorname
対角行列の行列式は、各対角成分の総乗 Πci に等しい。対角行列の行列式は、対角成分が等しい上三角行列、下三角行列の行列式とも等しくなる。 対角行列の転置行列は同一である。そのため対角行列は対称行列でもある。 対角行列の逆行列は対角成分の逆数を並べた対角行列である。 [ c 1 0 c 2 ⋱ 0 c n ] − 1 = [
i_{k})} を共に満たすことである。 種々の対称行列および別の種類の対称性を持つ行列 分散共分散行列 コクセター行列 ハンケル行列 ヒルベルト行列 交代行列(歪対称行列、反対称行列) 巡回行列 中心対称行列(英語版) 逆対角対称行列(英語版) テープリッツ行列 ^ Shilov 1974, p. 115
pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=164443 . ^ Mohar, Bojan (2004), “Graph Laplacians”, in Beineke, Lowell W.; Wilson, Robin
数学の線型代数学の分野における係数行列(けいすうぎょうれつ、英: coefficient matrix)とは、線型方程式の集合における変数の係数からなる行列のことを言う。 一般的に m 個の線型方程式と n 個の未知変数を含む系は a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x
線型代数学 > 行列値関数 > 行列指数関数 線型代数学における行列の指数関数(ぎょうれつのしすうかんすう、英語: matrix exponential; 行列乗)は、正方行列に対して定義される行列値関数で、通常の(実または複素変数の)指数関数に対応するものである。より抽象的には、行列リー群とその行列
漸化式を解くとは、漸化式で与えられている数列 (an) の一般項 an を n の陽な式で表すことである。 等差数列や等比数列は、その定義から極めて単純な漸化式を持つ。一般の等差数列に対する漸化式は an+1 = an + d という形に表される。定数 d はその等差数列の公差である。この漸化式は簡単に解けて、一般項は an =
Computational Science (pp. 111-120). Springer, Berlin, Heidelberg. ^ 行列の指数関数に基づく連立線形常微分方程式の大粒度並列解法とその評価 (日本応用数理学会論文誌 Vol.19, No.3, 2009, pp.293--312) 則竹渚宇, 今倉暁