语言
没有数据
通知
无通知
ニュートン・コーツの公式 中点則:区分求積法の定義で用いられる、シンプルな長方形近似 それについでシンプルな台形公式 簡便な割に高精度なシンプソンの公式 ロンバーグ積分 (台形公式と数列の加速法を組み合わせた公式) 積分点を適応的に取るガウス求積、ガウス=クロンロッド求積法、クレンショー・カーティス法(英語版)
シンプレクティック数値積分法 (シンプレクティックすうちせきぶんほう, symplectic integrator) とは、正準力学系の運動方程式に特化した常微分方程式の数値解法のことをいう。系のシンプレクティック形式およびハミルトニアンを保存するため、ルンゲ=クッタ法のような汎用の数値積分法に比
V の元)であるような関数全体の成す部分空間を考えても、線型性は保たれる。このような形で最も重要な特別な場合が生じるのは、K が実数体 R, 複素数体 C 若しくは p-進数体 Qp の有限次拡大(代数体)かつ V が有限次元ベクトル空間であるときであり、また K
数学において、指数積分(しすうせきぶん、英: exponential integral)Ei は指数関数を含む積分によって定義される特殊関数の一つである。 実数 x≠0 に対し指数積分 Ei(x) は次のように定義される。 Ei ( x ) = − p . v . ∫ − x ∞ e − t
数学において、対数積分(たいすうせきぶん、英: logarithmic integral function)li(x) とは、全ての正の実数 x ≠ 1 において次の自然対数 ln を含む定積分によって定義される特殊関数である。 li ( x ) = ∫ 0 x d t ln t {\displaystyle
〔integral〕 (名)
二重指数関数型数値積分公式(にじゅうしすうかんすうがたすうちせきぶんこうしき、英: double exponential formula, 略してDE公式)とは変数変換に基づく数値積分の公式の一つである。この公式は森正武、高橋秀俊によって提案された。変換後の被積分関数が端点で二重指数
分数階微分積分学(ぶんすうかいびぶんせきぶんがく、英: fractional calculus)は解析学(特に微分積分学)の一分野で、微分作用素 D および積分作用素 J が実数冪あるいは複素数冪をとる可能性について研究する学問である。 この文脈における「冪」の語は作用素の合成を繰り返し行うという意味で用いており、それに従えばたとえば