语言
没有数据
通知
无通知
function)とは、指数関数の肩に指数関数を持つ関数である。一般形は f ( x ) = a b x = a ( b x ) {\displaystyle f(x)=a^{b^{x}}=a^{(b^{x})}} 。 指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が
ニュートン・コーツの公式 中点則:区分求積法の定義で用いられる、シンプルな長方形近似 それについでシンプルな台形公式 簡便な割に高精度なシンプソンの公式 ロンバーグ積分 (台形公式と数列の加速法を組み合わせた公式) 積分点を適応的に取るガウス求積、ガウス=クロンロッド求積法、クレンショー・カーティス法(英語版)
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
数学において、指数積分(しすうせきぶん、英: exponential integral)Ei は指数関数を含む積分によって定義される特殊関数の一つである。 実数 x≠0 に対し指数積分 Ei(x) は次のように定義される。 Ei ( x ) = − p . v . ∫ − x ∞ e − t
実数値関数(じっすうちかんすう、英: real-valued function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。特に、定義域も実数の部分集合であるもの、すなわち実変数の実数値関数を実関数(じつかんすう、英: real function)という。
数学における二重数(にじゅうすう、英: dual numbers)または双対数(そうついすう)とは、実数 a, b と ε2 = 0(複零性)を満たす実数でない ε を用いて z = a + bε と表すことのできる数のことである。 二重数全体は、実数全体に ε2 = 0 を満たす新しい元 ε
(1)数や文字の右肩に付記して, その累乗を示す数字や文字。 a² や an などの2 や n。
線型代数学 > 行列値関数 > 行列指数関数 線型代数学における行列の指数関数(ぎょうれつのしすうかんすう、英語: matrix exponential; 行列乗)は、正方行列に対して定義される行列値関数で、通常の(実または複素変数の)指数関数に対応するものである。より抽象的には、行列リー群とその行列