语言
没有数据
通知
无通知
数え上げ(かぞえあげ、enumeration)は、数学においては、ある集合に対し、その集合から自然数全体の成す集合への単射を定義することである。また、そのような単射が少なくとも1つ存在するならば数え上げ可能であると言い、1つも存在しないならば数え上げ不可能であると言う。
の交叉数を持つことを意味する)ことは、二次式の条件であるから、P5 の中の二次超曲面(英語版)(quadric)を決定する。しかし、すべての 2次超曲面からなる因子の線形系(英語版)は、基本軌跡(英語版)(base locus)を持たない。実際、そのような各々の 2次超曲面はヴェロネーゼ曲面(英語版)(Veronese
数学、とくに解析学において、数え上げ測度(かぞえあげそくど、英: counting measure; 計数測度)とは、集合の元の個数を数えるという方法でその "大きさ"(あるいは "容積")を測る、ルベーグ積分における測度の一種である。 可測空間 S 上の数え上げ測度とは、任意の可測集合 A に対してその元の個数
一般に(無限個の場合をも含む)任意個数の変数を扱う場合には、用意する記号の都合上、添字記法に従う方が支配的である。 ^ 野村龍太郎,下山秀久編『工學字彙』(工學恊會, 1886)https://dl.ndl.go.jp/info:ndljp/pid/1678148/79 アリティ 族 (数学) 媒介変数 自由変数と束縛変数 変数 (プログラミング)
関数から陰伏的に得られる陽関数は一つとは限らず、一般に一つの陰関数は(定義域や値域でより分けることにより)複数の陽関数に分解される。このとき、陰伏的に得られた個々の陽関数をもとの陰関数の枝という。また、陰関数の複数の枝を総じて扱うならば、陰関数の概念から多価関数の概念を得ることになる。例えば、方程式
と、数値が変化する。 微細構造定数のような無次元量の物理定数は単位の取り方に依存しないが、他の物理定数同様、その値は物理的な計測で決定され、ある数式で数学的に決定される数学定数とは根本的に異なる。 物理定数の場合、計測の条件(重力の差による「重さ」の変化など)や結果により、数学定数
数理科学 計算科学—数値解析—確率論—逆問題—数理物理学—数理経済学—ゲーム理論—数理生物学—数理心理学—保険数理—数理工学 有名な定理と予想 フェルマーの最終定理—リーマン予想—連続体仮説—P≠NP予想—ゴールドバッハの予想—双子素数—ゲーデル
数や種類の多いこと。 また, たくさんの物。 副詞的にも用いる。