语言
没有数据
通知
无通知
算えることである。より一般には、自然数で添字付けられた有限集合 Si の無限族が与えられたとき、各 n に対する Sn に属する元の総数を数える「計数函数」(counting function) を記述することを模索するのが数え上げ数学の主題である。特定の集合に属する元の数を算える
数え上げ(かぞえあげ、enumeration)は、数学においては、ある集合に対し、その集合から自然数全体の成す集合への単射を定義することである。また、そのような単射が少なくとも1つ存在するならば数え上げ可能であると言い、1つも存在しないならば数え上げ不可能であると言う。
代数幾何学(だいすうきかがく、英: algebraic geometry)とは、多項式の零点(zero)のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。 大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中
はその体上で根を持つと結論できるか? ある場合にはその問題に答えることができ、別の場合には答えは否定的だが、(予想:)障害を知りしたがっていつこれがうまくいくかを知ろうとする。 有限体上の多項式方程式系が与えられたとき、どうやって根の個数を数えるか? 体を拡大したとき、根はどのように増えるか?
非アルキメデス幾何学 射影幾何学 アフィン幾何学 解析幾何学 代数幾何学 数論幾何学 ディオファントス幾何学 微分幾何学 リーマン幾何学 シンプレクティック幾何学 複素幾何学 有限幾何学 離散幾何学 デジタル幾何学 凸幾何学 計算幾何学 フラクタル インシデンス幾何学 非可換幾何学 非可換代数幾何学 [脚注の使い方]
回避]なリーマン面は充分に多くの有理型函数を持っていて、リーマン面が代数曲線となることを示した。リーマンの存在定理という名前で、コンパクトリーマン面の分岐被覆の深い結果が述べられていて、 そのような位相空間としての有限被覆は、分岐点の補空間の基本群の置換表現により分類される。リーマン面の性質は局所的
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。