语言
没有数据
通知
无通知
代数幾何学(だいすうきかがく、英: algebraic geometry)とは、多項式の零点(zero)のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。 大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中
非アルキメデス幾何学 射影幾何学 アフィン幾何学 解析幾何学 代数幾何学 数論幾何学 ディオファントス幾何学 微分幾何学 リーマン幾何学 シンプレクティック幾何学 複素幾何学 有限幾何学 離散幾何学 デジタル幾何学 凸幾何学 計算幾何学 フラクタル インシデンス幾何学 非可換幾何学 非可換代数幾何学 [脚注の使い方]
クラインのエランゲンプログラムの日本語訳と合本。原書第7版の邦訳。 公理 数学基礎論 ダフィット・ヒルベルト 非ユークリッド幾何学 ヒルベルトの公理系(英語版) ユークリッド幾何学 プロジェクト 数学 ポータル 数学 『幾何学基礎論』 - コトバンク 幾何学基礎の英訳のTeX、PDF版 (無料) 表示 編集
幾何学的群論の外的な前身には、リー群の格子の研究、特にモストウの剛性定理、クライン群(英語版)の研究、1970年代と1980年代初頭に低次元トポロジーと双曲幾何学で達成された進歩、特にウィリアム・サーストンの幾何化プログラムが含まれる。 幾何学的
回避]なリーマン面は充分に多くの有理型函数を持っていて、リーマン面が代数曲線となることを示した。リーマンの存在定理という名前で、コンパクトリーマン面の分岐被覆の深い結果が述べられていて、 そのような位相空間としての有限被覆は、分岐点の補空間の基本群の置換表現により分類される。リーマン面の性質は局所的
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。
シンプレクティック幾何学(シンプレクティックきかがく、英: symplectic geometry)とは、シンプレクティック多様体上で展開される幾何学をいう。シンプレクティック幾何学は解析力学を起源とするが、現在では大域解析学の一分野でもあり、可積分系・非可換幾何学・代数幾何学などとも深い繋がりを持