语言
没有数据
通知
无通知
非アルキメデス幾何学 射影幾何学 アフィン幾何学 解析幾何学 代数幾何学 数論幾何学 ディオファントス幾何学 微分幾何学 リーマン幾何学 シンプレクティック幾何学 複素幾何学 有限幾何学 離散幾何学 デジタル幾何学 凸幾何学 計算幾何学 フラクタル インシデンス幾何学 非可換幾何学 非可換代数幾何学 [脚注の使い方]
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。
また、平行線はどこまでも平行に伸びることが想定された。 それは、現実世界の在り方として、当然そうであると言う前提であった。 ユークリッド幾何学は永きにわたって「唯一の幾何学」であったが、『原論』の第5公準(平行線公準)に対する疑問から始まった研究の流れは19世紀に至ってついに非ユークリッド幾何学を生んだ。
高次元幾何学において、超多面体の面とは、その任意の次元の要素を言う。k 次元の面を k-次元面 (k-face) と呼ぶ。通常の多面体の多角形面は、二次元面である。超多面体の面全体の成す集合には超多面体自身と空集合が含まれ、一貫性のため空集合の「次元」は −1 が与えられる。任意の n-次元超多面体に対し、その面集合は −1
リーマン幾何学(リーマンきかがく、英: Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマン
、ハミルトンのアイコナール方程式を待たねばならない。 幾何光学は、光の波長が十分短い場合の極限として表すことができる。このとき等位相面が波面であり、等位相面の法線をつないだものが光線である。 波長ゼロの極限を取ることによって幾何光学の方程式を求める方法は、1911年にアルノルト・ゾンマーフェルトとJ
として全単射であることを要請することが多く、その場合の弧は、「自己交叉を持たず、閉でもなく、始点と終点を持つ曲線」である。 現実世界における具体例として、地球の大圏(あるいは大楕円(英語版))の一部は、大圏コースと呼ばれる。 上記の定義の特別な場合として円弧を得るには、全単射連続写像 γ : [0, 1] → R2 として γ (