语言
没有数据
通知
无通知
coordinates)と呼ばれ、一つの動径座標と一つの角度座標からなる、最も単純な極座標である。rθ 平面、極座標平面(または平面極座標)ともいう。特異点は (r, θ) = (0, θ) 即ち、xy座標での原点 (x, y) = (0, 0) である。2 次元実ベクトル空間にも定義できることから、複素数体
双極座標系(そうきょくざひょうけい、英語: Bipolar coordinates)はアポロニウスの円束を基底とした直交座標系である。紛らわしいことに、双極座標という言葉は二中心双極座標(英語版)に対しても使用される。また、双角座標系(英語版)という座標系もある。
coordinates) と呼ぶ。 座標系の種類としては、以下の例などがある。 直交座標系 斜交座標系 極座標系 一般化座標系 球座標系、円筒座標系 3DCGでは、扱っている空間全体の座標系をワールド座標系 (world coordinate system) あるいはグローバル座標系 (global coordinate
曲線上の二点 P ・ Q を通る直線を考え, 点 Q を点 P に限りなく近づけたとき, 二点 P ・ Q を通る直線が限りなく近づく直線を, その曲線の点 P における接線といい, 点 P を接点という。
二次曲線に一定点 A から任意の弦をひいたとき, その弦の両端における, 二つの接線の交点の軌跡は, 直線となる。 この直線を点 A に関する極線, 点 A を極という。
y軸, z軸の3軸を用いる。座標空間はx軸, y軸, z軸の向きにより、右手系と左手系と2つの表現方法が存在する。 上に加えてt軸(時間)を用いることもある。 直交座標系 斜交座標系 極座標系 双極座標系 片対数グラフ 両対数グラフ 座標 フレミングの法則 パラボラアンテナ
座標法(ざひょうほう)とは、平面において多角形の頂点座標によってその面積を求める数学的アルゴリズム。測量における用語の一つ。 靴紐公式、靴紐の方法、靴紐のアルゴリズム、ガウスの面積公式とも呼ばれる。 三辺法や三斜法に比べ、基本的に座標値を直接用いた四則演算のみで面積が求められるため、計算機上での求
(3) ここで、dx, dy, dz, dtc は、3つの直交する空間座標 x, y, z および選択された参照系内の時計の位置の座標時 tc におけるわずかな増分である。 式2は、固有時と座標時との間の関係、すなわち時間の遅れを表す基本的でよく引用される微分方程式である。シュワル