语言
没有数据
通知
无通知
対数関数的成長(たいすうかんすうてきせいちょう、英:logarithmic growth)または対数関数的増加、対数的増加とは、ある量の増大する速さが時間が経つにつれて、どんどん減少する対数関数で表せる現象のことである(例: y = C log x {\displaystyle y=C\log
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
指数関数的減衰(しすうかんすうてきげんすい、exponential decay)、または指数的減衰とは、ある量が減少する速さが減少する量に比例することである。数学的にいえば、この過程は微分方程式 d N d t = − λ N {\displaystyle {\frac {dN}{dt}}=-\lambda
{\text{prime}}\}} によって得られる数論的関数について述べる。 互いに素である正整数 m と n に対して、 a ( m n ) = a ( m ) + a ( n ) {\displaystyle a(mn)=a(m)+a(n)} が成立するとき、加法的関数(additive function)という。
線型代数学 > 行列値関数 > 行列指数関数 線型代数学における行列の指数関数(ぎょうれつのしすうかんすう、英語: matrix exponential; 行列乗)は、正方行列に対して定義される行列値関数で、通常の(実または複素変数の)指数関数に対応するものである。より抽象的には、行列リー群とその行列
指数関数時間(しすうかんすうじかん)あるいは指数時間(しすうじかん)とは、計算理論において指数関数を用いてあらわされる計算時間。計算複雑性理論では指数関数時間で解ける判定問題のクラスのことをクラス EXPTIME(あるいは EXP)という。 一般に指数関数時間やその以上のアルゴリズムは時間がかかり
function)とは、指数関数の肩に指数関数を持つ関数である。一般形は f ( x ) = a b x = a ( b x ) {\displaystyle f(x)=a^{b^{x}}=a^{(b^{x})}} 。 指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が
(1)数や文字の右肩に付記して, その累乗を示す数字や文字。 a² や an などの2 や n。