语言
没有数据
通知
无通知
幾何学を構成しているが、力学系の視点からも直接に研究される。 微分幾何学における基本的な問題意識は多様体上の微分である。これには多様体、接束、余接束、外微分、p-次元部分多様体上のp-形式の積分、ストークスの定理、ウェッジ積、リー微分などの研究が含まれることになる。これらはみな多変数
微分位相幾何学(びぶんいそうきかがく)もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが、位相が与えられている多様体の微分
接続)であるが、一般のベクトルバンドル上の接続(Koszul接続)や主バンドルの接続(主接続)にも拡張され、さらに一般のファイバーバンドルの接続へと拡張された。ただし実際に研究が進んでいるのは、ベクトルバンドルとその主バンドルに対する接続概念である。
幾何分布(きかぶんぷ、英: geometric distribution)は、離散確率分布で、次の2通りの定義がある。 ベルヌーイ試行を繰り返して初めて成功させるまでの試行回数 X の分布。台は {1, 2, 3, …}. ベルヌーイ試行を繰り返して初めて成功させるまでに失敗した回数 Y = X −
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。
超幾何分布(ちょうきかぶんぷ、英: hypergeometric distribution)とは、成功状態をもつ母集団から非復元抽出したときに成功状態がいくつあるかという確率を与える離散確率分布の一種である。男女・合否などのように2種の排他的属性に分割できる有限母集団からの非復元抽出に適用される。超
※一※ (名)