语言
没有数据
通知
无通知
8 を「三二・八」と表記する。 日本語では小数点を「コンマ」と言い表すことがあり、例えば、0.3秒を「コンマ3秒」と言う。また「コンマ以下(人の価値、度量、人物が人並み以下であること)」という言い回しがある。これらは、明治期に小数点としてコンマを用いるフランスの方式が入ったことによる(#日本におけるフランス式)。
(1)得点のかず。
固定小数点数(こていしょうすうてんすう、英: fixed-point number)は、小数点が置かれる桁を固定して表された数のことで、コンピュータ上で小数を表現する方法として使用される形式のひとつである。ある桁数のうちのある場所に小数点が固定されているもの(固定小数点
(−1)符号部 × 2指数部 − 15 ×(1 + 仮数部) 単精度の場合: (−1)符号部 × 2指数部 − 127 ×(1 + 仮数部) 倍精度の場合: (−1)符号部 × 2指数部 − 1023 ×(1 + 仮数部) 四倍精度の場合: (−1)符号部 × 2指数部 − 16383 ×(1 + 仮数部)
は体の構造を持っており、実数を係数とした多項式や実数の拡大体を考えることができる。ここで実数が極大順序体であることにより実数係数の多項式は 3 次以上なら既約にならない。したがって R の有限次元拡大になっている可換体は R 自身と複素数体 C しかなく、可換性を外してもほかの有限次拡大体は四元数体
ユークリッドの『原論』によれば、「位置をもち、部分を持たないものである」と定義されている。 また、公理からの演繹を重視する現代数学においては、「点とは何か」ということを直接に定義せず、単に幾何学的な集合(空間)の元のことであるとみなされる。 これは、点(または直線など)を実体のない無定義術語
〔数〕 0 と 1 の間の数を 0.23 のように整数の記数法で表したときこれを純小数, 純小数に 0 でない整数部分を付けて 3.75 のように表した数を帯(タイ)小数という。 これらを一括して小数という。
固定小数点数や浮動小数点数として表せる数を指す(コンピュータの数値表現も参照)。 前述のように実数は表現できないので、以下は全て、実数型ではなく、実数の近似を表現するデータ型である。 一般的に有理数を表すには分子と分母を整数として記憶する方法が用いられる。整数型も参考のこと。 固定小数点