语言
没有数据
通知
无通知
加法群 (additive group) は群演算をある意味で加法と考えることのできる群である。加法群は通常アーベル群であり、その二項演算を記号 + を使って書くのが一般的である。 この用語は複数の演算をもった構造で他の演算を忘れることによって得られる構造を明示するために広く使われる。例えば、整数
数幾何学のアレクサンドル・グロタンディークの仕事から動機を得たテクニックが使われている。D-加群のアプローチは、微分作用素を研究する伝統的な函数解析のテクニックとは異なっている。最も強い結果は、極大過剰決定系(英語版)(ホロノミック系(英語版))に対して得られ、表象により特性多様体(英語版)が定義さ
アーベル表現 (abelian representation)。これは表現のガロワ群の像が可換であることを意味する。 絶対既約表現 (absolutely irreducible representation)。これは体の代数的閉包上既約のままである。 バルソッティ・テイト表現 (Barsotti–Tate
を左アルティン的または右アルティン的と言うことができる。 左右両側の加群の構造をもつ加群は珍しいことではない。例えば R 自身は左かつ右 R-加群としての構造をもつ。実はこれは両側加群の例であり、別の環 S によってアーベル群 M を左 R 右 S 両側加群にできるかもしれない。実際、任意の右加群 M は自動的に整数環
選択公理の仮定のもと、他の2つの特徴づけが可能である。 部分加群からなる任意の空でない集合 S は(集合の包含関係に関して)極大元をもつ。これは極大条件として知られている。 すべての部分加群は有限生成である。 M が加群、K がその部分加群であれば、M がネーター的であるのは K と M/K
(\forall a\in A)} となるものをいう。M とその部分加群 A が与えられたとき、商 G-加群あるいは G-商加群または剰余 G-加群あるいは G-剰余加群 (G-quotient module) M/A が、作用を考えない抽象群としての剰余群 M/A に G の作用を g ⋅ ( m + A )
数学において、入射加群(にゅうしゃかぐん、英: injective module)、あるいは移入加群(いにゅうかぐん)とは、関手 Hom(–, E) が完全となるような加群 E のことである。 ホモロジー代数における基本的な概念のひとつ。 一般の加群 Q に対して反変関手 Hom(–, Q) は左完全である。
抽象代数学において、加群と部分加群が与えられると、それらの剰余加群、商加群 (quotient module) を構成することができる。この構成は、以下で書かれるが、整数を整数 n を法として環を得る方法の類似である。合同式を見よ。剰余群や剰余環に用いられるのと同じ構成である。 環 R 上の加群 A と A