语言
没有数据
通知
无通知
加群(かぐん) 環上の加群 (R-module) その特別な場合であるアーベル群 (abelian group) も単に加群と呼ぶ場合がある。 リー環上の加群 (g-module) 群上の加群 (G-module) D加群 微分加群 このページは数学の曖昧さ回避のためのページです。一つの語句が複数の
を環とし、環 Rop を R から台となる集合と加法はそのままで乗法だけを逆にして得られる環(反対環)とする。つまり、R において ab = c ならば Rop において ba = c である。このとき、任意の左 R-加群 M はそのまま右 Rop-加群と見ることができ、R 上の任意の右加群は Rop 上の左加群と考えることができる。
{\displaystyle \operatorname {H} ^{i}(X,-)} を大域切断関手(英語版) Γ ( X , − ) {\displaystyle \Gamma (X,-)} の i 次右導来関手として定義でき,実際そう定義する. 環付き空間 (X, O) が与えられ,F が O の O
線型代数学は K-ベクトル空間の圏 K-Vect の研究としてとらえることができる。例えば、ベクトル空間の次元定理(英語版)(基底数一定定理)は K-Vect の同型類の全体が濃度(基数)とちょうど対応することを述べるものであり、かつ K-Vect が任意の基数 n に対する自由ベクトル空間
加法群 (additive group) は群演算をある意味で加法と考えることのできる群である。加法群は通常アーベル群であり、その二項演算を記号 + を使って書くのが一般的である。 この用語は複数の演算をもった構造で他の演算を忘れることによって得られる構造を明示するために広く使われる。例えば、整数
数幾何学のアレクサンドル・グロタンディークの仕事から動機を得たテクニックが使われている。D-加群のアプローチは、微分作用素を研究する伝統的な函数解析のテクニックとは異なっている。最も強い結果は、極大過剰決定系(英語版)(ホロノミック系(英語版))に対して得られ、表象により特性多様体(英語版)が定義さ
アーベル表現 (abelian representation)。これは表現のガロワ群の像が可換であることを意味する。 絶対既約表現 (absolutely irreducible representation)。これは体の代数的閉包上既約のままである。 バルソッティ・テイト表現 (Barsotti–Tate
を左アルティン的または右アルティン的と言うことができる。 左右両側の加群の構造をもつ加群は珍しいことではない。例えば R 自身は左かつ右 R-加群としての構造をもつ。実はこれは両側加群の例であり、別の環 S によってアーベル群 M を左 R 右 S 両側加群にできるかもしれない。実際、任意の右加群 M は自動的に整数環