语言
没有数据
通知
无通知
行差(にっしゅうこうこうさ)という。観測者は常に東へ向かっているので、天体がそれに対して垂直な方向にあるとき、すなわち南中するときに日周光行差が最も大きくなる。 この他、太陽系自体の運動によるものを永年光行差、太陽系内の天体について光が到達するまでの動きを補正値として加えたものを惑星光行差という。
を動かすときに固定されているという意味で x は定数であると言っているのであり、最後の行では x に依存しないという意味で定数というのである。 数学において特定の数値は頻繁に表れ、慣習的に特別な記号であらわされる。そのような数値とその標準的な記号は数学定数と呼ばれる。 0 (零):群 ( Z , + ) {\displaystyle
いくつかの, すじ。
と、数値が変化する。 微細構造定数のような無次元量の物理定数は単位の取り方に依存しないが、他の物理定数同様、その値は物理的な計測で決定され、ある数式で数学的に決定される数学定数とは根本的に異なる。 物理定数の場合、計測の条件(重力の差による「重さ」の変化など)や結果により、数学定数
数学の分野における定数関数(ていすうかんすう、英: constant function; 定値写像)とは、それがとりうる値が変数の変動によって変わらない定数値の関数(写像)のことを言う。例えば、関数 f(x) = 4 はすべての値を 4 へと写すため、定数関数である。
階差数列(かいさすうれつ、英: progression of differences, sequence of differences)とは、ある数列に対し、隣り合う項の差をとることによってできる新たな数列のことである。数列の規則性が見えにくい場合でも、階差数列を考えることにより元の数列の素性が分かりやすくなる場合がある。
common difference)という。 例えば、5, 7, 9, … は初項 5, 公差 2 の等差数列である。同様に、1, 7, 13, … は公差 6 の等差数列である。 等差数列の初項を a0 とし、その公差を d とすれば、第n 項 an は a n = a 0 + n d {\displaystyle
誤差関数(ごさかんすう、英: error function)は、数学におけるシグモイド形状の特殊関数(非初等関数)の一種で、確率論、統計学、物質科学、偏微分方程式などで使われる。ガウスの誤差関数とも。定義は以下の通り。 erf ( x ) = 2 π ∫ 0 x e − t 2 d t {\displaystyle