语言
没有数据
通知
无通知
数学において、算術数列と幾何数列の項ごとの積によって与えられる、算術–幾何数列 (arithmetico–geometric sequence) は、象徴的に「算術⋅幾何数列」とか「(等差)×(等比)-型の数列」などのようにも呼ばれる。より平易に述べれば、一つの算術×幾何数列の第 n-項は、適当な算術数列の第 n-項と幾何級数の第
階差数列(かいさすうれつ、英: progression of differences, sequence of differences)とは、ある数列に対し、隣り合う項の差をとることによってできる新たな数列のことである。数列の規則性が見えにくい場合でも、階差数列を考えることにより元の数列の素性が分かりやすくなる場合がある。
について、(定義より公比は 0 でないため)公比 r は任意の n 番目の項とその次の項の比 r = an+1/an から得られる(特に r = 1 の場合は公差が 0 の等差数列でもある)。等比数列の各項は初項 a と公比 r を用いて具体的に以下のように表せる。 a , a r , a r 2 , … , a
漸化式を解くとは、漸化式で与えられている数列 (an) の一般項 an を n の陽な式で表すことである。 等差数列や等比数列は、その定義から極めて単純な漸化式を持つ。一般の等差数列に対する漸化式は an+1 = an + d という形に表される。定数 d はその等差数列の公差である。この漸化式は簡単に解けて、一般項は an =
等級の違い。 差別。 等差。
(1)一定の基準による等級の差。 ちがい。
数学で、ファレイ数列(ファレイすうれつ、フェアリー数列とも, Farey sequence [ˈfɛəri -]) とは、既約分数を順に並べた一群の数列であり、以下に述べるような初等整数論における興味深い性質を持つ。 正確にいえば、 自然数 n に対して、n に対応する(または、属する)ファレイ数列 (Farey
順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列