语言
没有数据
通知
无通知
〔数〕 偏導関数を求めること。
重要な非線型方程式には、 流体を記述するナビエ-ストークス方程式 一般相対性理論におけるアインシュタインの場の方程式 非線形波動を記述するKdV方程式・mKdV方程式 (これらの方程式は可積分系でも研究されている) クレローの方程式 非線形シュレディンガー方程式 などがある。 線型偏微分方程式
リーマン計量は多様体上の各点での接ベクトルの大きさを定めるものであり、局所的に線素の「長さ」を定めていることになる。ガウスが曲面論で示したように、このような局所的な情報から、多様体全体の形や大きさをかなりの程度知ることができる。 交代微分形式の方は、テンソル積の代わりに外積代数の積としての記号 ∧ を用い ∑
数学のとくに抽象代数学における形式微分(けいしきびぶん、英: formal derivative)は、微分法における通常の微分を形の上で真似た、多項式環または形式冪級数環上で定義される演算である。結果だけ見れば通常の微分と同じと言えるけれども、形式微分は極限の概念に基づくものではない(そもそも一般
来ることもある。それと関連して、常微分方程式の族を積分することによって一般解が得られることもある。 波動方程式に対する特性曲面は、次の方程式の解の等位面で得られる。 u t 2 = c 2 ( u x 2 + u y 2 + u z 2 ) . {\displaystyle
〔「詩経(邶風)」の「式微式微胡不帰」による。 「式」は発語, 「微」は衰える意〕
でない微分方程式は非線形微分方程式と呼ばれる。 例えば、g(x) を f(x) を含まない既知の関数とすれば、 ( d d x + α ) f ( x ) = g ( x ) {\displaystyle \left({\frac {\mathrm {d} }{\mathrm {d} x}}+\alpha
微分位相幾何学における微分形式が閉 (closed) である、または閉微分形式(へいびぶんけいしき、英: closed differential form、短く閉形式 (closed form) とは、その外微分が零となるときに言う。 シュヴァルツの定理により、C1-級(フランス語版)函数係数の任意