语言
没有数据
通知
无通知
付値(ふち、英: valuation、賦値、附値とも)とは、単位元 1 を持つ環 R と順序加群(英語版) G に対して、以下の3条件を満たす写像 v: R → G ∪ {∞} である。 v(1) = 0, v(0) = ∞ である。 任意の R の元 x, y に対して、v(xy) = v(x) +
立会中に, 値段がついて商いが成立すること。 売りと買いの値段に折り合いがつくこと。
n 次の不分岐拡大体という。 不分岐拡大について、以下のことが成立する。 (1) L が K の不分岐拡大体であるとき、K を含む任意の L の部分体も K の不分岐拡大体である。 (2) K の剰余体 F K {\displaystyle F_{K}} の標数 p が正であるとき、有限次代数拡大体
を全順序群にすることができる。 さらに一般的に、任意の全順序アーベル群 Γ が与えられたとき、値群 Γ をもつ付値環 D が存在する(下のセクションを見よ)。 付値環のイデアル全体は全順序集合をなすという事実から、付値環は局所整域であり、付値環のすべての有限生成イデアルは単項である(すなわち付値
(1)高い値段。
〔古くは「ことつく」と清音〕
柔道・剣道・囲碁・将棋などで, 段位の高いこと。 普通, 五段以上をいう。
〔動詞「付ける」の連用形から〕