语言
没有数据
通知
无通知
数学における二重数(にじゅうすう、英: dual numbers)または双対数(そうついすう)とは、実数 a, b と ε2 = 0(複零性)を満たす実数でない ε を用いて z = a + bε と表すことのできる数のことである。 二重数全体は、実数全体に ε2 = 0 を満たす新しい元 ε
数学の特に初等解析学における二項級数(にこうきゅうすう、英: binomial series)は二項式の冪(べき)のマクローリン級数を言う。 具体的に、α を任意の複素数として、函数 f が f(x) = (1 + x)α で与えられるとき、マクローリン展開 ( 1 + x ) α = ∑ k =
二重メルセンヌ数(にじゅうメルセンヌすう)は、数学において以下の形で表されるメルセンヌ数である。 M M p = 2 2 p − 1 − 1 {\displaystyle M_{M_{p}}=2^{2^{p}-1}-1} (pは素数) 二重メルセンヌ数の最初の4項は以下の通り オンライン整数列大辞典の数列
テイラー級数は滑らかな関数の、冪級数としての表現を与えている。 フーリエ級数は各項を三角関数とする級数による関数の表示を与えている。 調和級数はよく知られた収束しない級数の例である。調和級数が発散する現象はオイラーによる素数の無限性の証明にも利用されている。 ディリクレ級数は調和級数型の級数
function)とは、指数関数の肩に指数関数を持つ関数である。一般形は f ( x ) = a b x = a ( b x ) {\displaystyle f(x)=a^{b^{x}}=a^{(b^{x})}} 。 指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が
四乗数の末位は0, 1, 5, 6の4通りに限られる。下2桁は次の12通りに限られる。下3桁は52通り。 末位が0 ⇒ 下2桁は 00(とくに下4桁は 0000) 末位が1 ⇒ 下2桁は 01, 21, 41, 61, 81 末位が5 ⇒ 下2桁は 25(とくに下4桁は 0625) 末位が6 ⇒ 下2桁は
(1)二つのものが重なること。 また, そのもの。 ふたえ。
(1)二つ重なっていること。 また, そうなっているもの。 にじゅう。