语言
没有数据
通知
无通知
数学における二重数(にじゅうすう、英: dual numbers)または双対数(そうついすう)とは、実数 a, b と ε2 = 0(複零性)を満たす実数でない ε を用いて z = a + bε と表すことのできる数のことである。 二重数全体は、実数全体に ε2 = 0 を満たす新しい元 ε
112 = 1001 と二の位がいずれも 0 であるため) 有理数の平方として表される有理数を平方数ということもある。さらに一般には、可換体 K の乗法群 K* の部分集合 {x2 | x ∈ K} (直積集合と紛れるおそれのないときにはこれを (K*)2 などと表す)の元を平方数や平方元と呼ぶことがある。主に
二重メルセンヌ数(にじゅうメルセンヌすう)は、数学において以下の形で表されるメルセンヌ数である。 M M p = 2 2 p − 1 − 1 {\displaystyle M_{M_{p}}=2^{2^{p}-1}-1} (pは素数) 二重メルセンヌ数の最初の4項は以下の通り オンライン整数列大辞典の数列
function)とは、指数関数の肩に指数関数を持つ関数である。一般形は f ( x ) = a b x = a ( b x ) {\displaystyle f(x)=a^{b^{x}}=a^{(b^{x})}} 。 指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が
二個の平方数の和(にこのへいほうすうのわ)は「平方数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっておらず、フェルマーの4n+1定理、フェルマーの二平方定理、あるいは単にフェルマーの定理(フェルマーの最終定理とは異なる)などと呼ばれる。
n ( n + 1 ) = m 2 {\displaystyle {\frac {1}{2}}n(n+1)=m^{2}} である。両辺を8倍して平方完成することにより (2n + 1)2 = 8m2 + 1 となる。x = 2n + 1, y = 2m とおけば、ペル方程式 x2 - 2y2 = 1
(1)二つのものが重なること。 また, そのもの。 ふたえ。
(1)二つ重なっていること。 また, そうなっているもの。 にじゅう。