语言
没有数据
通知
无通知
power)とは、ある数値 n の5乗となる数値、すなわち、底(英語版)を n 、冪指数を 5 とする冪乗( n5 = n × n × n × n × n )である。 数値 n の5乗は、n の4乗に n 自体を掛けたものに等しく、また、n の3乗に n の2乗を掛けたものに等しい。 自然数の5乗を小さい順に列記すると、次のようになる。
累乗数(るいじょうすう、英: perfect power)とは、他の自然数の累乗になっている自然数、すなわち、mk(m, k は自然数で k は 2 以上)の形の数を指す。 累乗数を 1 から小さい順に列記すると 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81
{\displaystyle \zeta (2n)=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}} 空力音響学(英語版)では、乱流の出す音の仕事率は、乱流から十分に離れた場所では乱流の速度の8乗に比例するというライトヒルの八乗法則(英語版)が知られている。
算術演算および代数演算において、六乗数(ろくじょうすう、英語:sixth power)とは、ある数値 n の6乗となる数値。 すなわち n6 = n × n × n × n × n × n. 六乗数は、五乗数に数値 n をかけたものであり、二重平方数に平方数をかけたもの、立方数に同じ立方数をかけた
七乗数(しちじょうすう)は、同じ数を7乗してできる数。n番目の七乗数は、n7 = n × n × n × n × n × n × nと表され、n番目の六乗数をn倍するか、n番目の五乗数をn番目の平方数倍するか、n番目の四乗数をn番目の立方数倍するかで求められる。最初のいくつかの自然数(0を含む)の七乗数は下の通りである。
以下の最大の素数を p として、p# に等しい。p に素数の値を小さい順に代入していくことより、素数階乗の値は小さい順に 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, … 5# 以上の素数階乗数は全て一の位が
分量は貯蓄された分量に制約されており、貯蓄をすればするほど大きな投資も可能になるように見えるが、マクロ経済では単年度の追加的な投資量によりその年の追加的な貯蓄量が決定されており、このことを貯蓄のパラドックスという。マクロ経済で単年度の貯蓄量を増
乗法論である。 特殊関数の理論として、そのような楕円函数や多変数複素解析函数のアーベル函数は、大きな対称性をもつことからその関数が多くの等式をみたすことがいえる。特別な点では具体的に計算可能な特殊値を持つ。また虚数乗法は代数的整数論の中心的なテーマであり、円分体の理論をより広く拡張する事を可能にする。