语言
没有数据
通知
无通知
数学、初等代数学における多項式の次数(じすう、英: degree)は、多項式を不定元の冪積の線型結合からなる標準形(英語版)に表すとき、そこに現れる項のうち最も高い項の次数を言う。ここに、項の次数とは、それに現れる不定元の冪指数の総和である。次数の同義語として「位数」「階数」(order)
数学において、斉次多項式(せいじたこうしき、英: homogeneous polynomial)あるいは同次多項式(どうじたこうしき)、あるいは略して斉次式、同次式とは、非零項の次数が全て同じである多項式のことである。 例えば、2変数 x, y についての1次斉次多項式は、a, b を定数として a
k 次の項)とよび、ak をその項の係数とよぶ。特に、0次の項 a0 は定数項とよばれる。たとえば、多項式 3x3 − 7x2 + 2x − 23 の項とは 3x3, −7x2, 2x, −23 のことで、−7x2 の係数は −7 であり、またこの多項式の定数項は −23 である。 項を並べる順番は変更してよい。たとえば
式(有限フーリエ級数)の事に他ならない。 三角多項式は、例えば周期函数の補間に適用できる三角補間(英語版)に利用されるなど、広く用いられる。離散フーリエ変換にも用いられる。 「三角多項式」という名称は、実数値の場合には「多項式の空間に対する基底としての単項式(英語版)の代わりに sin(nx), cos(nx)
初等代数学における三項式(さんこうしき、英: trinomial)は、三つの項からなる多項式を言う。より一般には、三つの項からなる代数式(三項代数式: trinomial expression)を単に三項式 と呼ぶこともある(これと対照に、三項からなる多項式の方は「三項多項式」と呼んで区別する)。 3 x +
および L2 が P を分解する K の二つの拡大であるとき、L1 の元としての P の根と L2 の元としての P の根は「同じ」ものなのかという問いが自然に生じてくる。これには以下のような同値性が存在する: P の根をすべて含む L1 の部分拡大(P の(最小)分解体と呼ばれる)および L2
くぐる線が入ってくる方から交叉点を見てのものとして、成分は以下の表のように与えられる。 領域が交叉点をくぐる前の左側にあるとき: −t 領域が交叉点をくぐる前の右側にあるとき: 1 領域が交叉点をくぐった後の左側にあるとき: t 領域が交叉点をくぐった後の右側にあるとき: −1
ルジャンドル多項式(ルジャンドルたこうしき、英: Legendre polynomial)とは、ルジャンドルの微分方程式を満たすルジャンドル関数のうち次数が非負整数のものを言う。直交多項式の一種である。 解析学においてルジャンドルの微分方程式 d d x [ ( 1 − x 2 ) d d x f (