语言
没有数据
通知
无通知
Xi (i ∈ I) に関する多項式環 A[(Xi)i∈I] は、I の任意の有限部分集合 J に対する多項式環 A[(Xi)i∈J] を亙る「合併」として定義される。より精確には、I が有限でも無限でも、A[(Xi)i∈I] はモノイド環として定義できる。それはつまり、モニック単項式(つまり有限個の不定元
数学において、斉次多項式(せいじたこうしき、英: homogeneous polynomial)あるいは同次多項式(どうじたこうしき)、あるいは略して斉次式、同次式とは、非零項の次数が全て同じである多項式のことである。 例えば、2変数 x, y についての1次斉次多項式は、a, b を定数として a
演算を持っている: 環 K の内部演算(フランス語版)としての加法および乗法によって、係数同士の和と積ができる。 環 K による外部演算(フランス語版)としてのスカラー乗法によって、K の元を L の元に掛けることができる。 L の内部演算としての乗法により、L の元としての
数学における定数多項式(ていすうたこうしき、英: constant polynomial)は、定数項(英語版)以外の全ての項に関して、その係数が零であるような多項式を言う。 零多項式は定数項も含めたすべての項の係数が零となるような多項式で、もちろん定数多項式に含む。 定数多項式に付随する多項式函数は定数
k 次の項)とよび、ak をその項の係数とよぶ。特に、0次の項 a0 は定数項とよばれる。たとえば、多項式 3x3 − 7x2 + 2x − 23 の項とは 3x3, −7x2, 2x, −23 のことで、−7x2 の係数は −7 であり、またこの多項式の定数項は −23 である。 項を並べる順番は変更してよい。たとえば
および L2 が P を分解する K の二つの拡大であるとき、L1 の元としての P の根と L2 の元としての P の根は「同じ」ものなのかという問いが自然に生じてくる。これには以下のような同値性が存在する: P の根をすべて含む L1 の部分拡大(P の(最小)分解体と呼ばれる)および L2
くぐる線が入ってくる方から交叉点を見てのものとして、成分は以下の表のように与えられる。 領域が交叉点をくぐる前の左側にあるとき: −t 領域が交叉点をくぐる前の右側にあるとき: 1 領域が交叉点をくぐった後の左側にあるとき: t 領域が交叉点をくぐった後の右側にあるとき: −1
ルジャンドル多項式(ルジャンドルたこうしき、英: Legendre polynomial)とは、ルジャンドルの微分方程式を満たすルジャンドル関数のうち次数が非負整数のものを言う。直交多項式の一種である。 解析学においてルジャンドルの微分方程式 d d x [ ( 1 − x 2 ) d d x f (