语言
没有数据
通知
无通知
一次不等式 線形計画法 二次不等式 相加相乗平均 イェンセンの不等式 コーシー=シュワルツの不等式 ヘルダーの不等式 チェビシェフの不等式 三角不等式 シュールの不等式 ギブスの不等式 クラフトの不等式 ポアンカレの不等式(英語版) [脚注の使い方] ^ 大関 & 青柳 1967
数学の関数解析学におけるミンコフスキーの不等式(ミンコフスキーのふとうしき、英語: Minkowski's inequality)とは、Lp空間がノルム線型空間であることを述べる、数学の定理である。三角不等式の一般化とも言える。数学者ヘルマン・ミンコフスキーに因む。 S を測度空間、1 ≦ p ≦
イェンセンの不等式(いぇんせんのふとうしき、英語: Jensen's inequality)は、凸関数を使った不等式である。 f(x) を実数上の凸関数とする。 離散の場合: p 1 , p 2 , … {\displaystyle p_{1},\,p_{2},\,\ldots } を、 p 1 +
チェビシェフの不等式(チェビシェフのふとうしき、英: Chebyshev's inequality)は、不等式で表される、確率論の基本的な定理である。パフヌティ・チェビシェフによって初めて証明された。 標本または確率分布は、平均の周りに、ある標準偏差をもって分布する。この分布と標準偏差との間の
under order restrictions: nonasymptotic minimax risk", Technical report, UER de Sciences Économiques, Universite Paris X, Nanterre, France, 1983. T. Cover
ヤングの不等式(ヤングのふとうしき) 積に対するヤングの不等式:2つの量の積を上から評価する ヤングの畳み込み不等式:2つの函数の畳み込み積を上から評価する 積分作用素に対するヤングの不等式(英語版) ウィリアム・ヘンリー・ヤング(英語版):イギリスの数学者 (1863–1942)
叉形式の最も大きい正の部分空間の次元は b+ = 1 + 2pg で与えられる。加えて、ヒルツェブルフの符号定理により、c12 (X) = 2e + 3σ であり、ここに e = c2(X) はトポロジカルなオイラー標数であり、σ = b+ − b− は交叉形式の符号である。従って、ネターの不等式は
確率論において、ブールの不等式(ブールのふとうしき、英: Boole's inequality)またはユニオンバウンド(union bound)は、事象の有限あるいは可算集合について、少くとも1つの事象が起こる確率は個別の事象の確率の和よりも大きくない、ことを示す。 ブールの不等式の名称はジョージ・ブールにちなむ。