语言
没有数据
通知
无通知
物理学と数学において、体球調和関数(たいきゅうちょうわかんすう、英: solid harmonics)は球面座標系でのラプラス方程式の解を指す。原点で0になる正則な(regular)体球調和関数 R ℓ m ( r ) {\displaystyle R_{\ell }^{m}({\boldsymbol
数学における調和関数(ちょうわかんすう、英: harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。
調和数(ちょうわすう、英: harmonic divisor number)とは、自然数のうち、全ての正の約数の調和平均が整数値になる数のことである。最小は 1 で、その次は 6 である。実際、6 の正の約数4個の調和平均は 4 1 1 + 1 2 + 1 3 + 1 6 = 2 {\displaystyle
数学 > 特殊関数 > 調和関数 > 球面調和関数 球面調和関数(きゅうめんちょうわかんすう、英: spherical harmonics)あるいは球関数(きゅうかんすう、英: spherical functions)は以下のいずれかを意味する関数である: n
例えば、「ゴムひもの上の芋虫」(“worm on the rubber band”) と呼ばれる逆理がある。内容は「1メートルの(無限に伸びることができる)ゴムひもがある。ひもの一端からもう一方の端に向かって芋虫が毎分1センチの速さでひもの上を這うものとする。ゴムひもは1分ごとに(正確には芋虫
{1}{a+(n-1)d}}} と表せる数列 {hn} のことである。ここで −1/d は自然数でないとする。このとき、a は初項である。各項は隣接する2項の調和平均になっている(調和中項)。調和数列の極限は 0 である。例としては、 12 , 6 , 4 , 3 , 12 5 , 2 , … , 12 n ,
この式に現れる関数 Ψ ( t ) {\displaystyle \Psi (t)} が緩和関数である。 緩和関数は指数関数型である場合、その緩和はデバイ緩和と呼ばれる。この場合は応答関数も指数関数型になる。外力の瞬間値に対応する熱平衡状態へ向かわせようとする機構だけが系内に働いている場合、緩和関数
数学において劣調和函数(れつちょうわかんすう、英: subharmonic function)および優調和函数(ゆうちょうわかんすう、英: superharmonic function)は、偏微分方程式、複素解析およびポテンシャル論において幅広く用いられている重要な函数のクラスである。 直観的に言えば、劣調和