语言
没有数据
通知
无通知
G\to {\mathbb {R} }\cup \{-\infty \},} が多重劣調和的(plurisubharmonic)であるとは、それが上半連続であり、すべての複素直線 { a + b z ∣ z ∈ C } ⊂ C n {\displaystyle \{a+bz\mid z\in {\mathbb
調和数(ちょうわすう、英: harmonic divisor number)とは、自然数のうち、全ての正の約数の調和平均が整数値になる数のことである。最小は 1 で、その次は 6 である。実際、6 の正の約数4個の調和平均は 4 1 1 + 1 2 + 1 3 + 1 6 = 2 {\displaystyle
数学における調和関数(ちょうわかんすう、英: harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。
例えば、「ゴムひもの上の芋虫」(“worm on the rubber band”) と呼ばれる逆理がある。内容は「1メートルの(無限に伸びることができる)ゴムひもがある。ひもの一端からもう一方の端に向かって芋虫が毎分1センチの速さでひもの上を這うものとする。ゴムひもは1分ごとに(正確には芋虫
{1}{a+(n-1)d}}} と表せる数列 {hn} のことである。ここで −1/d は自然数でないとする。このとき、a は初項である。各項は隣接する2項の調和平均になっている(調和中項)。調和数列の極限は 0 である。例としては、 12 , 6 , 4 , 3 , 12 5 , 2 , … , 12 n ,
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に
フルヴィッツのゼータ函数 エプシュタインのゼータ函数 ハッセ・ヴェイユのゼータ函数 伊原のゼータ函数 新谷のゼータ函数 これらとは別に、 ワイエルシュトラスのゼータ関数(英語版) 隣接代数のゼータ関数 ヤコビのゼータ関数(ドイツ語版) レルヒゼータ函数(英語版) もある。 表示 編集