语言
没有数据
通知
无通知
確率分布(かくりつぶんぷ、英: probability distribution)は、確率変数に対して、各々の値をとる確率全体を表したものである。日本産業規格では、「確率変数がある値となる確率,又はある集合に属する確率を与える関数」と定義している。 例えば、「サイコロ2個を振ったときの出た目の和」は確率変数である。この確率変数
数学の統計学における分散(ぶんさん、英: variance)とは、データ(母集団、標本)、確率変数(確率分布)の標準偏差の自乗のことである。分散も標準偏差と同様に散らばり具合を表し、標準偏差より分散の方が計算が簡単なため、計算する上で分散を用いることも多い。 分散は具体的には、平均値からの偏差の2乗の平均に等しい。データ
確率分布関数(かくりつぶんぷかんすう、英: probability distribution function)とは、確率論において、意味が曖昧な言葉である。文脈によって、以下の3つのどれかを指す。 累積分布関数 確率質量関数 確率密度関数 累積分布関数を分布関数と省略することもあり、それに確率を
連続確率分布(れんぞくかくりつぶんぷ、英: continuous probability distribution)や連続型確率分布(れんぞくがたかくりつぶんぷ)は、確率論において、累積分布関数が連続な確率分布である。連続確率分布となるのは確率変数 X が連続型のときに限られる。絶対連続分布と区別する際は広義連続分布と呼ぶ。
離散一様分布(りさんいちようぶんぷ、英: discrete uniform distribution)は、確率論や統計学における離散確率分布の一種であり、有限集合の全ての値について、等しく確からしい場合である。 確率変数が n 個の値 k1, k2, …, kn を同じ確率でとりうるとき、離散一様分布と言える。任意の
〔probability〕
どのような生物の種であっても、ある時点、ある場所で先祖から生まれ、時間とともにその生息範囲を広げて行ったと考えるべきである。その時の移住可能な場所は、到達が可能で、かつ生存が可能な場所であった。とすれば、よほど移動能力が高くて生息地のえり好みがあるものでなければ、その分布は連続的に広がって行く。つまり、生物の分布は、
確率論において、条件付き確率分布(じょうけんつきかくりつぶんぷ、英: conditional probability distribution)とは、確率変数 X と Y があり、X の値が特定の値であることを知ったときの Y の確率分布のことである。 条件付き累積分布関数・条件付き確率質量関数・条件付き