语言
没有数据
通知
无通知
が科学雑誌『サイエンス』に論文を発表した。 この論文によると、重水素を含むアセトンに超音波を当ててキャビテーションを発生させ、生成した細かな泡が壊れるとき飛び出す中性子をとらえたという。そして、高温高圧下で重水素同士の熱核融合が起きたものと報告した。 しかしながら、同僚による実験で再現できなかった
炉壁表面でも問題が生じる。プラズマイオンが炉壁に衝突すると「物理スパッタリング」と呼ばれる炉壁材料原子のはじき出しが起こる。炉壁面に炭素素材を使用すると、水素同位体の入射でメタンやエチレンなどの炭化水素が発生して、炉壁が損耗する化学スパッタリングという現象も起こる。
中心点火と高速点火の違いは、一度のレーザー照射による爆縮で点火に至るか否かによる。従来の中心点火方式では高い球対称爆縮が要求され、これがレーザー核融合開発の大きな障害となっていた。一方、一度爆縮された燃料球が慣性で静止している極めて短時間に(高速に)超高強度・超短パルスレーザーを照射することで、点火
本来、原子核の安定度は鉄を中心に、軽い小さな原子核は融合する事でより重く大きく、反対に重く大きい原子核は分裂する事で軽く小さくなったほうが自身の持つエネルギーが少なくて済むので安定となる。原子力発電のような核分裂反応は、ウランのように特に重い元素を利用している。核融合反応では反対に小さく軽い原子核を持つ水素
重イオン(じゅうイオン)とは、相対的に重い原子のイオンのことを指す。大体炭素以上の重たい原子のイオンのことを指すが、リチウム以上の物をさすこともある。加速器の分野で使われる用語で、重イオン加速器で加速してビームとし重粒子線として扱う。 応用分野としては、炭素イオン線などを患部に照射する重
中性子捕捉療法 (BNCT) に適用するためにはビーム状の熱外中性子束として約1013m-2・s-1が必要とされている。D-D核融合反応を利用したIECF装置では約2.4 MeVのエネルギーを持つ高速中性子が生成されるので、これを BNCT に応用するためには適切な中性子減速材等を付加して10
慣性閉じ込め方式の一形態で、数mmの重金属製の殻の内側に固体燃料がコーティングされたターゲットを用いて固体燃料への直接的なレーザー照射から生じるアブレーション(溶発)によりターゲット中心部に1021cm-3の高密度プラズマを生成することにより、核融合反応を起こさせ、同時にアブレーションにより、ほぼ100T以上の磁場がターゲット内部に自己発生する。
〔物〕 物体が外力の作用を受けない限り同じ運動状態を続けようとする性質。