语言
没有数据
通知
无通知
が科学雑誌『サイエンス』に論文を発表した。 この論文によると、重水素を含むアセトンに超音波を当ててキャビテーションを発生させ、生成した細かな泡が壊れるとき飛び出す中性子をとらえたという。そして、高温高圧下で重水素同士の熱核融合が起きたものと報告した。 しかしながら、同僚による実験で再現できなかった
炉壁表面でも問題が生じる。プラズマイオンが炉壁に衝突すると「物理スパッタリング」と呼ばれる炉壁材料原子のはじき出しが起こる。炉壁面に炭素素材を使用すると、水素同位体の入射でメタンやエチレンなどの炭化水素が発生して、炉壁が損耗する化学スパッタリングという現象も起こる。
中心点火と高速点火の違いは、一度のレーザー照射による爆縮で点火に至るか否かによる。従来の中心点火方式では高い球対称爆縮が要求され、これがレーザー核融合開発の大きな障害となっていた。一方、一度爆縮された燃料球が慣性で静止している極めて短時間に(高速に)超高強度・超短パルスレーザーを照射することで、点火
理としては、トンネル効果によるものとする説や、宇宙線に含まれるミューオンによるものとする説など、複数の仮説がある。本項目では、低温で目視でき、実用的なエネルギー源として活用できうる規模で起きたと主張される核融合反応を扱っている。1989年に常温核融合に関するセンセーショナルな発表があったのち、再現性
焦電核融合(しょうでんかくゆうごう、Pyroelectric fusion)とは、焦電性結晶が生成する高強度の静電場を利用した核融合反応のこと。焦電性結晶の静電場により、重水素(またはトリチウム)イオンを加速し、重水素(またはトリチウム)を含む金属水素化物に衝突させて核融合反応を発生させる。
核融合反応(かくゆうごうはんのう、(英: nuclear fusion reaction)とは、軽い核種同士が融合してより重い核種になる核反応を言う。単に核融合と呼ばれることも多い。核分裂反応と同じく古くから研究されている。 核融合反応を連続的に発生させエネルギー源として利用する核融合炉も古くから研
とけあうこと。 とけて一つになること。
ミューオン触媒核融合(ミューオンしょくばいかくゆうごう、Muon-catalyzed fusion)とは、ミュー粒子(μ-、負の電荷を持ち負ミューオンとも呼ばれる)が媒介となって起きる、水素およびその同位体(重水素、三重水素)間での核融合反応のこと。 負ミューオンは電子の約200倍の質量を持ち、物質