语言
没有数据
通知
无通知
観測されるときの振動数によって2つのグループに分けられる。 光学磁気双極子遷移は赤外光、可視光、紫外光によって、2つの異なる電子準位の副準位間で起こる。 磁気共鳴遷移はマイクロ波やラジオ波によって、1電子準位の中の角運動量の副準位間で起こる。 磁気共鳴遷移は、原子や分子中の電子の角運動量によるものである場合は電子スピン共鳴(E
電気双極子遷移(でんきそうきょくしせんい)は、電子と電磁場との相互作用による遷移において,電子の電気双極子が支配的であるときの遷移のことである。実際には磁気双極子や電気四極子による寄与もあるのだが、一般的には電気双極子による寄与が最も大きいことが多い。 フェルミの黄金率によると、ある相互作用ハミルトニアン
(1)うつりかわること。 うつりかわり。 推移。
{monopole} }} 電磁気学においては 単極子が電荷である場合の双極子は電気双極子という。 単極子が磁荷である場合の双極子は磁気双極子という。 アマチュア無線のダイポール・アンテナ、気象におけるダイポールモード現象、原子核物理学における巨大双極子共鳴、ソフトダイポールモードなどでこの概念が用いられる。
遷移層(せんいそう、Solar transition region)は、太陽の大気で彩層とコロナの間の領域である。 紫外線望遠鏡を用いて宇宙から観測することができる。いくつかの無関係だが重要な遷移が起こっているため、重要である。 ここより下では、形の維持や特徴に重力が支配的になり、そのため太陽はしば
π*遷移と表わされる。nで示される自由電子対を持つ助色団は、芳香族性π結合遷移と同じように独自の遷移を持つ。こういった検出可能な電子遷移を経ることができる分子の部分は、こういった遷移が電磁放射(光)を吸収し、これが電磁スペクトルのどこかで色として知覚されうるため、発色団と呼ばれうる。以下の分子電子遷移が存在する。
{X}}-Y=Z\leftrightarrow X^{+}=Y-{\ddot {Z}}^{-}}}} という形式の共鳴混成体で表される構造を持ち、電気的に中性な化合物のことである。右の構造式のように1位(原子X)が正電荷、3位(原子Z)が負電荷を帯びた共鳴構造の寄与があるため1,3-双極子と呼ばれる。 具体的には以下のような化合物が挙げられる。
〖moment〗