语言
没有数据
通知
无通知
力学において、オイラーの運動方程式(オイラーのうんどうほうていしき)とは剛体の回転運動を表す式である。 一般に、トルク Nと角運動量 L の関係は、剛体の回転中心、または剛体の重心を原点とする慣性系においては次のような表式となる。 N = d L d t {\displaystyle {\boldsymbol
ニュートンの運動方程式(ニュートンのうんどうほうていしき、英: Newton's equation of motion)は、古典力学において、物体の非相対論的な運動を記述する以下のような微分方程式である: m a = m d 2 r d t 2 = F . {\displaystyle m{\boldsymbol
ハイゼンベルクの運動方程式(英: Heisenberg equation of motion)は、量子力学をハイゼンベルク描像によって記述する場合の、オブザーバブルの時間発展についての基礎方程式である。 今日、この式に対してハイゼンベルクの名前が用いられることが多いが、歴史的にはこの方程式を与えた
ボルツマン方程式は、2体弾性衝突を記述した方程式であるが、ここで弾性を非弾性に変更すれば、2体衝突が非弾性衝突をする系を記述する非弾性ボルツマン方程式を得る。これは、まさに、粉体気体 (Granular Gas) と呼ばれる、ソフトマターの集団現象を記述する。この粉体気体を記述する、非弾性
波動方程式(はどうほうていしき、英: wave equation)とは、次の式で表される定数係数二階線形偏微分方程式のことである。 1 s 2 ∂ 2 u ∂ t 2 = Δ u {\displaystyle {\frac {1}{s^{2}}}{\frac {\partial ^{2}u}{\partial
方程式を代数的に取り扱うという立場においては線型微分方程式は最も基本的な対象となる。 重要な数学的概念の導入・発展をもたらした関数方程式に、熱方程式や超幾何関数の微分方程式、可積分系に対するKdV方程式・KZ方程式が挙げられる。 微分方程式や差分方程式の解は、一般解と特異解とに分類されることがある。
幾何光学において、アイコナール方程式(アイコナールほうていしき)は光の伝播をあらわす基礎方程式である。 形式的には解析力学のハミルトン=ヤコビの方程式と同じ形である。 幾何光学の近似(波長が十分小さい)のもとで、マクスウェルの方程式から等位相面をあらわす量 L ( r ) {\displaystyle
ボルツマン方程式 (英: Boltzmann equation)は、運動論的方程式の一つの形で、粒子間の2体衝突の効果だけを出来るだけ精確に取り入れたボルツマンの衝突項を右辺にもつ方程式である。そしてそれは気体中の熱伝導、拡散などの輸送現象を論ずる気体分子運動論の基本となる方程式である。 時刻 t における速度分布関数