语言
没有数据
通知
无通知
(1)形・性質などが写したようによく似ていること。
ムーア-ペンローズの擬似逆行列(ぎじぎゃくぎょうれつ、pseudo-inverse matrix)は線型代数学における逆行列の概念の一般化である。擬逆行列、一般化逆行列、一般逆行列(英: generalized inverse)ともいう。また擬は疑とも書かれる。
力学における相似則(そうじそく、英: law of similarity (similitude), similarity rule)とは、複数の、ある意味で相似な系における物理量の比が系の大きさによらないある一定値をとるという法則である。たとえば物理現象の基礎方程式が線形の場合、入力と出力は比例し、その比は一定になる。
新年初売りの福袋を買うために大晦日からの2日間を48時間待ちという長蛇の列に並ぶことになった。ところがその列には訳ありの老若男女が集まっていたため、喜朗の周りで次々と事件が起こる。果たして喜朗は、福袋を無事手に入れることができるのか? 『行列48時間』(ぎょうれつようじゅうはちじかん)のタイトルで
n)行列を直交行列(またはユニタリ行列)U,Vと対角行列Dに分解 A = UDV* 正方行列 零行列 対角行列 三角行列 ハンケル行列 テプリッツ行列 転置行列 随伴行列 対称行列 エルミート行列 正規行列 - ユニタリ対角化可能な行列のクラス 単位元 - 単位行列 逆元 - 正則行列 - 逆行列 直交行列
を F と G の相似比という。相似な図形の対応する線分(辺)の長さの比は一定であり、相似比に等しい。 直線図形(多角形など)においては、相似な図形の対応する角の大きさは等しくなる。 図形の相似の概念は図形の合同(r = 1 の場合)の拡張であるが、それらを区別するため、図形の相似
相似次元(そうじじげん、similarity dimension)は、図形の自己相似性に注目した次元の定義である。人工的な自己相似図形に対して次元を求める場合に用いる。人工的な自己相似図形以外の図形(実際の自然界に存在する図形など)に対しても相似次元の概念を適用できるように定義を拡張した次元として、容量次元がある。
相似である場合を指す。これは、相似図形はその形状が同じで一辺の長さや面積の比が(空間的スケール比である)相似比を用いて特定の比例関係として表されるのと同様、分布の形が同じで統計的性質(平均や分散など)がスケールを用いて特定の比例関係として表される場合を統計的相似と考えるとわかりやすい。