语言
没有数据
通知
无通知
(1)形・性質などが写したようによく似ていること。
力学における相似則(そうじそく、英: law of similarity (similitude), similarity rule)とは、複数の、ある意味で相似な系における物理量の比が系の大きさによらないある一定値をとるという法則である。たとえば物理現象の基礎方程式が線形の場合、入力と出力は比例し、その比は一定になる。
ベクトル空間の次元 - ベクトル空間において、一次独立(線型独立)な生成系の濃度。 多様体や代数多様体の次元 複体のホモロジー次元 可換環のクルル次元。次元論 (代数学)も参照。 環の大域次元 加群の次元(射影次元、移入次元、etc.) 位相次元(トポロジカル次元) ルベーグ被覆次元 帰納次元: 大きな帰納的次元
相似である場合を指す。これは、相似図形はその形状が同じで一辺の長さや面積の比が(空間的スケール比である)相似比を用いて特定の比例関係として表されるのと同様、分布の形が同じで統計的性質(平均や分散など)がスケールを用いて特定の比例関係として表される場合を統計的相似と考えるとわかりやすい。
擬似相関(ぎじそうかん、英: Spurious relationship, Spurious correlation)は、2つの事象に因果関係がないのに、見えない要因(潜伏変数)によって因果関係があるかのように推測されること。擬似相関は、客観的に精査するとそれが妥当でないときにも、2つの集団間に意味の有る関係があるような印象を与える。
ゼロ次元(ゼロじげん)とは、1960年代から1970年代初頭にかけて活動していた前衛パフォーマンスアート集団。「人間の行為をゼロに導く」をコンセプトに過激な全裸パフォーマンスを繰り返したことから、ネオダダや九州派、時間派といった当時の反芸術運動の中でも最左派に位置づけられる。「儀式集団・ゼロ次元」(ぎしきしゅうだん・ゼロじげん)とも。
ホモロジー次元(ホモロジーじげん、英: homological dimension)はホモロジー代数におけるいくつかの関連する概念を意味する: 射影次元、射影分解に基づいたホモロジー次元 移入次元、移入分解に基づいたホモロジー次元 平坦次元、平坦分解に基づいたホモロジー次元 大域次元
4次元(よじげん、四次元)は、次元が4であること。次元が4である空間を4次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らない。数学においてはユークリッド空間をはじめとしてベクトル空間や多様体など次元を考え得る空間や対象は様々ある(詳細は「次元」および「次元 (数学)」を参照)。 端的にいうと、ある集合