语言
没有数据
通知
无通知
算術級数の素数定理(さんじゅつきゅうすうのそすうていり)は、初項 a と公差 d が互いに素である等差数列に含まれる素数で、x 以下のものの数を π d , a ( x ) {\displaystyle \pi _{d,a}(x)} で表すとき、 π d , a ( x ) ∼ 1 φ ( d ) L
数学における無限算術級数(むげんさんじゅつきゅうすう、英: infinite arithmetic series)は、その項が算術数列を成す無限級数を言う。1 + 1 + 1 + 1 + · · · や 1 + 2 + 3 + 4 + · · · はその例であるが、無限算術級数の一般形は ∑ n =
theorem)は、「任意の正整数は、1 を除いて、一つまたはそれ以上の素数の積として(因子の順番の違いを除いて)ただ一通りに表すことができる」という初等整数論(算術)における定理である。 定理 ― 任意の正整数 n > 1 は一意的に素数の積に表される: n = p 1 n 1 p 2 n 2 ⋯ p k
Kolmogorov's Three-Series Theorem)は、確率変数の無限級数が概収束するかどうかの判定条件を確率分布に関連した3つの級数の収束性に基づいて述べるものである。名称はアンドレイ・コルモゴロフにちなむ。コルモゴロフの三級数定理をクロネッカーの補題(英
〔arithmetic〕
物理定数(ぶつりていすう、ぶつりじょうすう、英: physical constant)とは、値が変化しない物理量のことである。 プランク定数や万有引力定数、アボガドロ定数などは非常に有名なものである。例えば、光速はこの世で最も速いスカラー量としてのスピードで、ボーア半径は水素の電子の(第一)軌道半
(x)+O\left({\sqrt {x}}\log(x)\right)} 逆に、上記の評価式が成り立てばリーマン予想が成り立つことも知られている。 また前節で挙げた表を見れば分かるように、x が小さければ π ( x ) < Li ( x ) {\displaystyle \pi (x)<\operatorname
因数定理(いんすうていり、英: factor theorem)とは、多項式の根から元の多項式を因数分解することができるという定理である。因数定理は剰余の定理の特別の場合になっている。 定理 (Ruffini[要検証 – ノート]) 多項式 f(x) が一次式 x − α を因子に持つ必要十分条件は f(α)