语言
没有数据
通知
无通知
〔probability〕
平衡系の統計力学において、等確率の原理(とうかくりつのげんり、英: principle of equal probabilities)あるいは等重率の原理(とうじゅうりつのげんり、英: principle of equal weights)は、孤立した平衡系について、許される系の状態はどれも等しい確率で現れるとする作業仮説。
負のエネルギーや負の確率をナンセンスな概念と考えてはならない。充分に定義された数学の概念であるからだ、負の金額のように。 負の確率の概念は後に物理学や量子力学で関心をひくようになる。リチャード・ファインマンは-3個のリンゴが現実で有効な概念ではないように、負の数を計算で使う物体はない、ただし負の金額は有効だが、と議論した。さら
事象を根元事象または単純事象 (elementary event / simple event) 、複数の根元事象の和集合を複合事象 (compound event) という。つまり、 F {\displaystyle {\mathcal {F}}} は、根元事象から生成される最小の完全加法族となっている。
外確率(がいかくりつ、英: exotic probability)とは、[0, 1]の範囲の外側を扱う確率論の一分野である。 外確率に関する論文の主な著者はサウル・ヨッセフである。彼によると、確率値として有効な数は、実数、複素数、四元数である。 ヨッセフは外確率
頻度主義者にとって、仮説は(真か偽かの)命題であり、頻度主義者にとっての仮説の確率は0か1であるが、ベイズ統計学では、真理値が不確かであれば、仮説に割り当てられる確率も0から1の範囲になる。 ベイズ確率(およびベイズ統計学)は、ベイズの定理の特別な場合を証明したトーマス・ベイズにちなんだ命名(実際の命名は1950
大型のハリケーン」のように、災害の規模を表す尺度としても利用される。ある値を超える確率を表す場合には超過確率年(ちょうかかくりつねん)や超過確率(ちょうかかくりつ)、年超過確率(ねんちょうかかくりつ)と呼ばれる。 確率年は、事象が1回発生してから次に発生するまでの期間の期待値として定義される。あるい
Theory of errors)は最小二乗法を誤りがちな観察を正すために使い、特に天文学の分野においては、エラーが正規分布するという前提のもと最も真の値でありそうなものを測定した。1812年には、ラプラスは彼が瞬間積率母関数や最小二乗法、帰納的確率論、仮説の検証