语言
没有数据
通知
无通知
状態方程式(じょうたいほうていしき) 状態方程式 (宇宙論) 状態方程式 (制御理論) 状態方程式 (熱力学) 熱力学的状態方程式 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選ん
ファン・デル・ワールスの状態方程式(ファン・デル・ワールスのじょうたいほうていしき、英語: van der Waals equation)とは、実在気体を表現する状態方程式の一つである。1873年にヨハネス・ファン・デル・ワールスにより提案された。 ファン・デル・ワールスの状態方程式は、実在気体の
ディーテリチ(Dieterici)の状態方程式(ディエテリチの状態方程式)とは実在気体の振る舞いを説明する状態方程式のひとつである。 ディーテリチの方程式は以下のように表される。 P = n R T V − n b exp ( − n a R T V ) {\displaystyle P={\frac
状態方程式(じょうたいほうていしき)とは、制御工学ではシステムの入力と出力の関係を表す方程式をいう。 制御工学における状態方程式とは、制御対象のシステム(プラントという)が入力に対してどのような応答であるかを決定する方程式のことである。制御工学では、システムの入力と出力を観測することにより入出力の
理想気体は実在しない。理想気体に対して現実の気体は、実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをするため、常温・常圧において、実在気体を理想気体とみなしても問題ない場合は多い。 理想
を温度、体積と物質量で表す式を指す場合が多い。 流体だけでなく固体に対しても、その熱力学的性質を表現する状態方程式を考えることが出来る。磁性体や誘電体でも状態方程式を考える場合もある。主に熱平衡における系の温度と他の状態量との関係を表す関係式を指すが、必ずしも温度との関係を
〔数〕 未知数に関する無理式を含む方程式。
方程式を代数的に取り扱うという立場においては線型微分方程式は最も基本的な対象となる。 重要な数学的概念の導入・発展をもたらした関数方程式に、熱方程式や超幾何関数の微分方程式、可積分系に対するKdV方程式・KZ方程式が挙げられる。 微分方程式や差分方程式の解は、一般解と特異解とに分類されることがある。