语言
没有数据
通知
无通知
≤ A {\displaystyle f(x)\leq A} が成立するとき、その函数は上界 A によって上から抑えられる(bounded above)と言い、そのような A が存在するときその函数は上に有界であるという。それと対照的に、X 内のすべての x に対して f ( x ) ≥ B {\displaystyle
{\overline {x}}} ) で割ったもの。相対的なばらつきを表す。単位のない数となり、百分率であらわされることもある。相対標準偏差 (RSD, relative standard deviation) とも呼ばれる。 平均値が異なる二つの集団のばらつきを比較する場合などに用いられる。 C . V .
数を代表する文字がその値をいろいろとり得るとき, その文字をいう。 x・y・z などで示されることが多い。
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に
フルヴィッツのゼータ函数 エプシュタインのゼータ函数 ハッセ・ヴェイユのゼータ函数 伊原のゼータ函数 新谷のゼータ函数 これらとは別に、 ワイエルシュトラスのゼータ関数(英語版) 隣接代数のゼータ関数 ヤコビのゼータ関数(ドイツ語版) レルヒゼータ函数(英語版) もある。 表示 編集
数学の、特に解析学における冪函数(べきかんすう、巾函数、英: power function)は、適当な定数 a に対して定義される函数 f a : x ↦ x a {\displaystyle f_{a}\colon x\mapsto x^{a}} を言う。ここに定数 a は、この冪函数の冪指数 (exponent)
数学の分野におけるラメ函数(ラメかんすう、英: Lamé function)あるいは楕円型調和函数(ellipsoidal harmonic function)とは、二階の常微分方程式の一つとして知られるラメの方程式(Lamé's equation)の解である。論文 (Gabriel Lamé 1837)